Differential Pattern of Cell Death and ROS Production in Human Airway Epithelial Cells Exposed to Quinones Combined with Heated-PM2.5 and/or Asian Sand Dust.
Int J Mol Sci
; 24(13)2023 Jun 23.
Article
en En
| MEDLINE
| ID: mdl-37445720
The combined toxicological effects of airborne particulate matter (PM), such as PM2.5, and Asian sand dust (ASD), with surrounding chemicals, particularly quinones, on human airway epithelial cells remain underexplored. In this study, we established an in vitro combination exposure model using 1,2-naphthoquinones (NQ) and 9,10-phenanthroquinones (PQ) along with heated PM (h-PM2.5 and h-ASD) to investigate their potential synergistic effects. The impacts of quinones and heated PM on tetrazolium dye (WST-1) reduction, cell death, and cytokine and reactive oxygen species (ROS) production were examined. Results revealed that exposure to 9,10-PQ with h-PM2.5 and/or h-ASD dose-dependently increased WST-1 reduction at 1 µM compared to the corresponding control while markedly decreasing it at 10 µM. Higher early apoptotic, late apoptotic, or necrotic cell numbers were detected in 9,10-PQ + h-PM2.5 exposure than in 9,10-PQ + h-ASD or 9,10-PQ + h-PM2.5 + h-ASD. Additionally, 1,2-NQ + h-PM2.5 exposure also resulted in an increase in cell death compared to 1,2-NQ + h-ASD and 1,2-NQ + h-PM2.5 + h-ASD. Quinones with or without h-PM2.5, h-ASD, or h-PM2.5 + h-ASD significantly increased ROS production, especially with h-PM2.5. Our findings suggest that quinones, at relatively low concentrations, induce cell death synergistically in the presence of h-PM2.5 rather than h-ASD and h-PM2.5 + h-ASD, partially through the induction of apoptosis with increased ROS generation.
Palabras clave
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Naftoquinonas
/
Polvo
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Int J Mol Sci
Año:
2023
Tipo del documento:
Article
País de afiliación:
Japón