Your browser doesn't support javascript.
loading
Prior CT Improves Deep Learning for Malignancy Risk Estimation of Screening-detected Pulmonary Nodules.
Venkadesh, Kiran Vaidhya; Aleef, Tajwar Abrar; Scholten, Ernst T; Saghir, Zaigham; Silva, Mario; Sverzellati, Nicola; Pastorino, Ugo; van Ginneken, Bram; Prokop, Mathias; Jacobs, Colin.
Afiliación
  • Venkadesh KV; From the Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (K.V.V., T.A.A., E.T.S., B.v.G., M.P., C.J.); Robotics and Control Laboratory, The University of British Columbia, Vancouver, Canada (T.A.A.); Department of Medicin
  • Aleef TA; From the Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (K.V.V., T.A.A., E.T.S., B.v.G., M.P., C.J.); Robotics and Control Laboratory, The University of British Columbia, Vancouver, Canada (T.A.A.); Department of Medicin
  • Scholten ET; From the Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (K.V.V., T.A.A., E.T.S., B.v.G., M.P., C.J.); Robotics and Control Laboratory, The University of British Columbia, Vancouver, Canada (T.A.A.); Department of Medicin
  • Saghir Z; From the Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (K.V.V., T.A.A., E.T.S., B.v.G., M.P., C.J.); Robotics and Control Laboratory, The University of British Columbia, Vancouver, Canada (T.A.A.); Department of Medicin
  • Silva M; From the Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (K.V.V., T.A.A., E.T.S., B.v.G., M.P., C.J.); Robotics and Control Laboratory, The University of British Columbia, Vancouver, Canada (T.A.A.); Department of Medicin
  • Sverzellati N; From the Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (K.V.V., T.A.A., E.T.S., B.v.G., M.P., C.J.); Robotics and Control Laboratory, The University of British Columbia, Vancouver, Canada (T.A.A.); Department of Medicin
  • Pastorino U; From the Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (K.V.V., T.A.A., E.T.S., B.v.G., M.P., C.J.); Robotics and Control Laboratory, The University of British Columbia, Vancouver, Canada (T.A.A.); Department of Medicin
  • van Ginneken B; From the Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (K.V.V., T.A.A., E.T.S., B.v.G., M.P., C.J.); Robotics and Control Laboratory, The University of British Columbia, Vancouver, Canada (T.A.A.); Department of Medicin
  • Prokop M; From the Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (K.V.V., T.A.A., E.T.S., B.v.G., M.P., C.J.); Robotics and Control Laboratory, The University of British Columbia, Vancouver, Canada (T.A.A.); Department of Medicin
  • Jacobs C; From the Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands (K.V.V., T.A.A., E.T.S., B.v.G., M.P., C.J.); Robotics and Control Laboratory, The University of British Columbia, Vancouver, Canada (T.A.A.); Department of Medicin
Radiology ; 308(2): e223308, 2023 08.
Article en En | MEDLINE | ID: mdl-37526548
Background Prior chest CT provides valuable temporal information (eg, changes in nodule size or appearance) to accurately estimate malignancy risk. Purpose To develop a deep learning (DL) algorithm that uses a current and prior low-dose CT examination to estimate 3-year malignancy risk of pulmonary nodules. Materials and Methods In this retrospective study, the algorithm was trained using National Lung Screening Trial data (collected from 2002 to 2004), wherein patients were imaged at most 2 years apart, and evaluated with two external test sets from the Danish Lung Cancer Screening Trial (DLCST) and the Multicentric Italian Lung Detection Trial (MILD), collected in 2004-2010 and 2005-2014, respectively. Performance was evaluated using area under the receiver operating characteristic curve (AUC) on cancer-enriched subsets with size-matched benign nodules imaged 1 and 2 years apart from DLCST and MILD, respectively. The algorithm was compared with a validated DL algorithm that only processed a single CT examination and the Pan-Canadian Early Lung Cancer Detection Study (PanCan) model. Results The training set included 10 508 nodules (422 malignant) in 4902 trial participants (mean age, 64 years ± 5 [SD]; 2778 men). The size-matched external test sets included 129 nodules (43 malignant) and 126 nodules (42 malignant). The algorithm achieved AUCs of 0.91 (95% CI: 0.85, 0.97) and 0.94 (95% CI: 0.89, 0.98). It significantly outperformed the DL algorithm that only processed a single CT examination (AUC, 0.85 [95% CI: 0.78, 0.92; P = .002]; and AUC, 0.89 [95% CI: 0.84, 0.95; P = .01]) and the PanCan model (AUC, 0.64 [95% CI: 0.53, 0.74; P < .001]; and AUC, 0.63 [95% CI: 0.52, 0.74; P < .001]). Conclusion A DL algorithm using current and prior low-dose CT examinations was more effective at estimating 3-year malignancy risk of pulmonary nodules than established models that only use a single CT examination. Clinical trial registration nos. NCT00047385, NCT00496977, NCT02837809 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Horst and Nishino in this issue.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Nódulos Pulmonares Múltiples / Aprendizaje Profundo / Neoplasias Pulmonares Tipo de estudio: Diagnostic_studies / Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Humans / Male / Middle aged País/Región como asunto: America do norte Idioma: En Revista: Radiology Año: 2023 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Nódulos Pulmonares Múltiples / Aprendizaje Profundo / Neoplasias Pulmonares Tipo de estudio: Diagnostic_studies / Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Humans / Male / Middle aged País/Región como asunto: America do norte Idioma: En Revista: Radiology Año: 2023 Tipo del documento: Article