Your browser doesn't support javascript.
loading
Electron counting detectors in scanning transmission electron microscopy via hardware signal processing.
Peters, Jonathan J P; Mullarkey, Tiarnan; Hedley, Emma; Müller, Karin H; Porter, Alexandra; Mostaed, Ali; Jones, Lewys.
Afiliación
  • Peters JJP; Advanced Microscopy Laboratory (AML), Trinity College Dublin, the University of Dublin, Dublin, Ireland. jonathan.peters@tcd.ie.
  • Mullarkey T; School of Physics, Trinity College Dublin, the University of Dublin, Dublin, Ireland. jonathan.peters@tcd.ie.
  • Hedley E; Advanced Microscopy Laboratory (AML), Trinity College Dublin, the University of Dublin, Dublin, Ireland.
  • Müller KH; Centre for Doctoral Training in the Advanced Characterisation of Materials, AMBER Centre, Dublin, Ireland.
  • Porter A; Department of Materials, University of Oxford, Oxford, UK.
  • Mostaed A; Faculty of Engineering, Department of Materials, Imperial College London, London, UK.
  • Jones L; Faculty of Engineering, Department of Materials, Imperial College London, London, UK.
Nat Commun ; 14(1): 5184, 2023 Aug 25.
Article en En | MEDLINE | ID: mdl-37626044
Transmission electron microscopy is a pivotal instrument in materials and biological sciences due to its ability to provide local structural and spectroscopic information on a wide range of materials. However, the electron detectors used in scanning transmission electron microscopy are often unable to provide quantified information, that is the number of electrons impacting the detector, without exhaustive calibration and processing. This results in arbitrary signal values with slow response times that cannot be used for quantification or comparison to simulations. Here we demonstrate and optimise a hardware signal processing approach to augment electron detectors to perform single electron counting.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Irlanda

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Irlanda