Variation in the CENP-A sequence association landscape across diverse inbred mouse strains.
Cell Rep
; 42(10): 113178, 2023 10 31.
Article
en En
| MEDLINE
| ID: mdl-37742188
Centromeres are crucial for chromosome segregation, but their underlying sequences evolve rapidly, imposing strong selection for compensatory changes in centromere-associated kinetochore proteins to assure the stability of genome transmission. While this co-evolution is well documented between species, it remains unknown whether population-level centromere diversity leads to functional differences in kinetochore protein association. Mice (Mus musculus) exhibit remarkable variation in centromere size and sequence, but the amino acid sequence of the kinetochore protein CENP-A is conserved. Here, we apply k-mer-based analyses to CENP-A chromatin profiling data from diverse inbred mouse strains to investigate the interplay between centromere variation and kinetochore protein sequence association. We show that centromere sequence diversity is associated with strain-level differences in both CENP-A positioning and sequence preference along the mouse core centromere satellite. Our findings reveal intraspecies sequence-dependent differences in CENP-A/centromere association and open additional perspectives for understanding centromere-mediated variation in genome stability.
Palabras clave
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Autoantígenos
/
Proteínas Cromosómicas no Histona
Tipo de estudio:
Risk_factors_studies
Límite:
Animals
Idioma:
En
Revista:
Cell Rep
Año:
2023
Tipo del documento:
Article