Direct cortical inputs to hippocampal area CA1 transmit complementary signals for goal-directed navigation.
Neuron
; 111(24): 4071-4085.e6, 2023 Dec 20.
Article
en En
| MEDLINE
| ID: mdl-37816349
The subregions of the entorhinal cortex (EC) are conventionally thought to compute dichotomous representations for spatial processing, with the medial EC (MEC) providing a global spatial map and the lateral EC (LEC) encoding specific sensory details of experience. Yet, little is known about the specific types of information EC transmits downstream to the hippocampus. Here, we exploit in vivo sub-cellular imaging to record from EC axons in CA1 while mice perform navigational tasks in virtual reality (VR). We uncover distinct yet overlapping representations of task, location, and context in both MEC and LEC axons. MEC transmitted highly location- and context-specific codes; LEC inputs were biased by ongoing navigational goals. However, during tasks with reliable reward locations, the animals' position could be accurately decoded from either subregion. Our results revise the prevailing dogma about EC information processing, revealing novel ways spatial and non-spatial information is routed and combined upstream of the hippocampus.
Palabras clave
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Navegación Espacial
/
Procesamiento Espacial
Límite:
Animals
Idioma:
En
Revista:
Neuron
Asunto de la revista:
NEUROLOGIA
Año:
2023
Tipo del documento:
Article