A corrugated epsilon-nearzero saturable absorber for a high-performance 1.3 µm solid-state bulk laser.
Nanoscale
; 15(43): 17434-17442, 2023 Nov 09.
Article
en En
| MEDLINE
| ID: mdl-37855687
Epsilon-near-zero (ENZ) materials with vanishing permittivity exhibit unprecedented optical nonlinearity within subwavelength propagation lengths in the ENZ region, making them promising photoelectric materials that have achieved exciting results in ultrafast pulse laser modulations. In this study, we fabricated a novel saturable absorber (SA) based on a corrugated indium tin oxide (CITO) film with a symmetrical geometry using a low-cost self-assembly process. The strong saturable absorption of the CITO film triggered by the ENZ effect at normal incidence was comparable to that of the planar indium tin oxide (ITO) film at an optimal 60° incidence (TM polarization) at 1340 nm. In addition, the strong nonlinear optical properties of the CITO film were not limited by the incident angle and polarization state of the pump laser over a wide range of 0-20°. Benefiting from the excellent saturable absorption of CITO-based SA at normal incidence, a Q-switching operation with CITO-based SA at 1.34 µm was achieved in a Nd:YVO4 solid-state laser system, obtaining pulses of a duration of 85.6 ns, which was one order of magnitude narrower than that of the planar ITO-based SA. This study presents a new strategy for developing high-performance ENZ-based SAs and ultrafast lasers.
Texto completo:
1
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nanoscale
Año:
2023
Tipo del documento:
Article
País de afiliación:
China