Your browser doesn't support javascript.
loading
A corrugated epsilon-nearzero saturable absorber for a high-performance 1.3 µm solid-state bulk laser.
Wang, Mengxia; Jiang, Hang; Ma, Hao; Zhao, Chuanrui; Zhao, Yuanan; Wang, Zhengping; Xu, Xinguang; Shao, Jianda.
Afiliación
  • Wang M; Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China. yazhao@siom.ac.cn.
  • Jiang H; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Ma H; Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China.
  • Zhao C; Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China. yazhao@siom.ac.cn.
  • Zhao Y; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Wang Z; Key Laboratory of Materials for High Power Laser, Chinese Academy of Sciences, Shanghai 201800, China.
  • Xu X; Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China. yazhao@siom.ac.cn.
  • Shao J; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
Nanoscale ; 15(43): 17434-17442, 2023 Nov 09.
Article en En | MEDLINE | ID: mdl-37855687
Epsilon-near-zero (ENZ) materials with vanishing permittivity exhibit unprecedented optical nonlinearity within subwavelength propagation lengths in the ENZ region, making them promising photoelectric materials that have achieved exciting results in ultrafast pulse laser modulations. In this study, we fabricated a novel saturable absorber (SA) based on a corrugated indium tin oxide (CITO) film with a symmetrical geometry using a low-cost self-assembly process. The strong saturable absorption of the CITO film triggered by the ENZ effect at normal incidence was comparable to that of the planar indium tin oxide (ITO) film at an optimal 60° incidence (TM polarization) at 1340 nm. In addition, the strong nonlinear optical properties of the CITO film were not limited by the incident angle and polarization state of the pump laser over a wide range of 0-20°. Benefiting from the excellent saturable absorption of CITO-based SA at normal incidence, a Q-switching operation with CITO-based SA at 1.34 µm was achieved in a Nd:YVO4 solid-state laser system, obtaining pulses of a duration of 85.6 ns, which was one order of magnitude narrower than that of the planar ITO-based SA. This study presents a new strategy for developing high-performance ENZ-based SAs and ultrafast lasers.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2023 Tipo del documento: Article País de afiliación: China