Your browser doesn't support javascript.
loading
PhenoSV: interpretable phenotype-aware model for the prioritization of genes affected by structural variants.
Xu, Zhuoran; Li, Quan; Marchionni, Luigi; Wang, Kai.
Afiliación
  • Xu Z; Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
  • Li Q; Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
  • Marchionni L; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
  • Wang K; Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, M5G2C1, Canada.
Nat Commun ; 14(1): 7805, 2023 Nov 28.
Article en En | MEDLINE | ID: mdl-38016949
Structural variants (SVs) represent a major source of genetic variation associated with phenotypic diversity and disease susceptibility. While long-read sequencing can discover over 20,000 SVs per human genome, interpreting their functional consequences remains challenging. Existing methods for identifying disease-related SVs focus on deletion/duplication only and cannot prioritize individual genes affected by SVs, especially for noncoding SVs. Here, we introduce PhenoSV, a phenotype-aware machine-learning model that interprets all major types of SVs and genes affected. PhenoSV segments and annotates SVs with diverse genomic features and employs a transformer-based architecture to predict their impacts under a multiple-instance learning framework. With phenotype information, PhenoSV further utilizes gene-phenotype associations to prioritize phenotype-related SVs. Evaluation on extensive human SV datasets covering all SV types demonstrates PhenoSV's superior performance over competing methods. Applications in diseases suggest that PhenoSV can determine disease-related genes from SVs. A web server and a command-line tool for PhenoSV are available at https://phenosv.wglab.org .
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Genómica / Variación Estructural del Genoma Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Genómica / Variación Estructural del Genoma Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos