Validating Operating Stability and Biocompatibility Toward Safer Zinc-Based Batteries.
Adv Mater
; 36(15): e2308836, 2024 Apr.
Article
en En
| MEDLINE
| ID: mdl-38175537
ABSTRACT
Wearable and implantable electronics are standing at the frontiers of science and technology, driven by the increasing demands from modernized lifestyles. Zinc-based batteries (ZBs) are regarded as ideal energy suppliers for these biocompatible electronics, but the corresponding biocompatibility validation is still in the initial stage. Meanwhile, complicated working conditions and some extreme electrolyte environments raise strict challenges, leaving less choices for safe ZBs. Toward higher operating stability and biocompatibility, this work proposes a hydrogel electrolyte featuring the moisture maintaining ability and a robust interface, which could further provide a milder environment for Zn-MnO2 batteries and Zn-air batteries. The cytotoxicity and tissue injury of batteries are evaluated with human cell lines and battery implantations on the animal models, which demonstrate the high biocompatibility of ZBs, while preliminary wearable devices implementation further verifies their operating stability. This work may provide a pathway for developing and validating biocompatible ZBs, contributing to their future practical employment in relevant fields.
Palabras clave
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Zinc
/
Compuestos de Manganeso
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Adv Mater
Asunto de la revista:
BIOFISICA
/
QUIMICA
Año:
2024
Tipo del documento:
Article
País de afiliación:
China