Your browser doesn't support javascript.
loading
In Situ, Rapid Synthesis of Carbon-Loaded High Density and Ultrasmall High Entropy Oxide Nanoparticles as Efficient Electrocatalysts.
Chang, Rui; Li, Hongdong; Tian, Xiaofeng; Yang, Yu; Dong, Tian; Wang, Zhenhui; Lai, Jianping; Feng, Shouhua; Wang, Lei.
Afiliación
  • Chang R; Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
  • Li H; Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
  • Tian X; Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
  • Yang Y; Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
  • Dong T; Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
  • Wang Z; Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
  • Lai J; Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
  • Feng S; Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
  • Wang L; Key Laboratory of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
Small ; 20(24): e2309937, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38178644
ABSTRACT
High entropy materials offer almost unlimited catalytic possibilities due to their variable composition, unique structure, and excellent electrocatalytic performance. However, due to the strong tendency of nanoparticles to coarsen and agglomerate, it is still a challenge to synthesize nanoparticles using simple methods to precisely control the morphology and size of the nanoparticles in large quantities, and their large-scale application is limited by high costs and low yields. Herein, a series of high-entropy oxides (HEOs) nanoparticles with high-density and ultrasmall size (<5 nm) loaded on carbon nanosheets with large quantities are prepared by Joule-heating treatment of gel precursors in a short period of time (≈60 s). Among them, the prepared (FeCoNiRuMn)3O4-x catalyst shows the best electrocatalytic activity for oxygen evolution reaction, with low overpotentials (230 mV @10 mA cm-2, 270 mV @100 mA cm-2), small Tafel slope (39.4 mV dec-1), and excellent stability without significant decay at 100 mA cm-2 after 100 h. The excellent performance of (FeCoNiRuMn)3O4-x can be attributed to the synergistic effect of multiple elements and the inherent structural stability of high entropy systems. This study provides a more comprehensive design idea for the preparation of efficient and stable high entropy catalysts.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article