Your browser doesn't support javascript.
loading
Reorganizing Helmholtz Adsorption Plane Enables Sodium Layered-Oxide Cathode beyond High Oxidation Limits.
Sun, Mei-Yan; Liu, Bo; Xia, Yang; Wang, Ya-Xuan; Zheng, Yin-Qi; Wang, Lan; Deng, Liang; Zhao, Lei; Wang, Zhen-Bo.
Afiliación
  • Sun MY; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
  • Liu B; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
  • Xia Y; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
  • Wang YX; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
  • Zheng YQ; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
  • Wang L; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
  • Deng L; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
  • Zhao L; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
  • Wang ZB; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
Adv Mater ; : e2311432, 2024 Jan 08.
Article en En | MEDLINE | ID: mdl-38191132
ABSTRACT
Sodium layered-oxides (NaxTMO2) sustain severe interfacial stability issues when subjected to battery applications. Particularly at high potential, the oxidation limits including transition metal dissolution and solid electrolyte interphase reformation are intertwined upon the cathode, resulting in poor cycle ability. Herein, by rearranging the complex and structure of the Helmholtz absorption plane adjacent to NaxTMO2 cathodes, the mechanism of constructing stable cathode/electrolyte interphase (CEI) to push up oxidation limits is clarified. The strong absorbent fluorinated anions replace the solvents into the inner Helmholtz plane, thereby reorganizing the Helmholtz absorption structure and spontaneously inducing anion-dominated interphase to envelop more active sites for layered oxides. More importantly, such multi-component CEI proves effective for the long-term durability of a series of manganese-based oxide cathodes, which achieves a 1500-cycles lifetime against high oxidation voltage limit beyond 4.3 V. This work unravels the key role of breaking high-oxidation limits in attaining higher energy density of layered-oxide systems.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China