Your browser doesn't support javascript.
loading
Validated assays for the quantification of C9orf72 human pathology.
Salomonsson, S E; Maltos, A M; Gill, K; Aladesuyi Arogundade, O; Brown, K A; Sachdev, A; Sckaff, M; Lam, K J K; Fisher, I J; Chouhan, R S; Van Laar, V S; Marley, C B; McLaughlin, I; Bankiewicz, K S; Tsai, Y-C; Conklin, B R; Clelland, C D.
Afiliación
  • Salomonsson SE; Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
  • Maltos AM; Memory & Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
  • Gill K; Gladstone Institutes, San Francisco, CA, USA.
  • Aladesuyi Arogundade O; Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
  • Brown KA; Memory & Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
  • Sachdev A; Gladstone Institutes, San Francisco, CA, USA.
  • Sckaff M; Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
  • Lam KJK; Memory & Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
  • Fisher IJ; Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
  • Chouhan RS; Memory & Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
  • Van Laar VS; Gladstone Institutes, San Francisco, CA, USA.
  • Marley CB; Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
  • McLaughlin I; Memory & Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
  • Bankiewicz KS; Gladstone Institutes, San Francisco, CA, USA.
  • Tsai YC; Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
  • Conklin BR; Memory & Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
  • Clelland CD; Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
Sci Rep ; 14(1): 828, 2024 01 08.
Article en En | MEDLINE | ID: mdl-38191789
ABSTRACT
A repeat expansion mutation in the C9orf72 gene is the leading known genetic cause of FTD and ALS. The C9orf72-ALS/FTD field has been plagued by a lack of reliable tools to monitor this genomic locus and its RNA and protein products. We have validated assays that quantify C9orf72 pathobiology at the DNA, RNA and protein levels using knock-out human iPSC lines as controls. Here we show that single-molecule sequencing can accurately measure the repeat expansion and faithfully report on changes to the C9orf72 locus in what has been a traditionally hard to sequence genomic region. This is of particular value to sizing and phasing the repeat expansion and determining changes to the gene locus after gene editing. We developed ddPCR assays to quantify two major C9orf72 transcript variants, which we validated by selective excision of their distinct transcriptional start sites. Using validated knock-out human iPSC lines, we validated 4 commercially available antibodies (of 9 tested) that were specific for C9orf72 protein quantification by Western blot, but none were specific for immunocytochemistry. We tested 15 combinations of antibodies against dipeptide repeat proteins (DPRs) across 66 concentrations using MSD immunoassay, and found two (against poly-GA and poly-GP) that yielded a 1.5-fold or greater signal increase in patient iPSC-motor neurons compared to knock-out control, and validated them in human postmortem and transgenic mouse brain tissue. Our validated DNA, RNA and protein assays are applicable to discovery research as well as clinical trials.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Demencia Frontotemporal / Traumatismos Craneocerebrales / Esclerosis Amiotrófica Lateral Límite: Animals / Humans Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Demencia Frontotemporal / Traumatismos Craneocerebrales / Esclerosis Amiotrófica Lateral Límite: Animals / Humans Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos