Your browser doesn't support javascript.
loading
Real needle for minimal invasive procedures training using motion sensors and optical flow.
García-Esteban, J A; Curto, B; Moreno, V; Hernández, F; Alonso, P; Serrano, F J; Blanco, F J.
Afiliación
  • García-Esteban JA; Dpt. Computers and Automation, University of Salamanca, Plaza de los Caídos S/N, Salamanca, 37008, Spain. Electronic address: jage@usal.es.
  • Curto B; Dpt. Computers and Automation, University of Salamanca, Plaza de los Caídos S/N, Salamanca, 37008, Spain. Electronic address: bcurto@usal.es.
  • Moreno V; Dpt. Computers and Automation, University of Salamanca, Plaza de los Caídos S/N, Salamanca, 37008, Spain. Electronic address: vmoreno@usal.es.
  • Hernández F; University Clinical Hospital of Salamanca, Paseo San Vicente 182, Salamanca, 37007, Spain. Electronic address: felipezaballos@usal.es.
  • Alonso P; University Clinical Hospital of Salamanca, Paseo San Vicente 182, Salamanca, 37007, Spain. Electronic address: pablo.alonso.hernandez@gmail.es.
  • Serrano FJ; Dpt. Computers and Automation, University of Salamanca, Plaza de los Caídos S/N, Salamanca, 37008, Spain. Electronic address: fjaviersr@usal.es.
  • Blanco FJ; Dpt. Computers and Automation, University of Salamanca, Plaza de los Caídos S/N, Salamanca, 37008, Spain. Electronic address: fjblanco@usal.es.
Comput Biol Med ; 170: 107935, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38215620
ABSTRACT
Minimally invasive percutaneous insertion procedures are widely used techniques in medicine. Their success is highly dependent on the skills of the practitioner. This paper presents a haptic simulator for training in these procedures, whose key component is a real percutaneous insertion needle with a sensory system incorporated to track its 3D location at every instant. By means of the proposed embedded vision system, the attitude (spatial orientation) and depth of insertion of a real needle are estimated. The proposal is founded on a novel depth estimation procedure based on optical flow techniques, complemented by sensory fusion techniques with the attitude calculated with data from an Inertial Measurement Unit (IMU) sensor. This procedure allows estimating the needle attitude with an accuracy of tenths of a degree and the displacement with an accuracy of millimeters. The computational algorithm runs on an embedded computer with real-time constraints for tracking the movement of a real needle. This haptic needle location data is used to reproduce the movement of a virtual needle within a simulation app. As a fundamental result, an ergonomic and realistic training simulator has been successfully constructed for healthcare professionals to acquire the mental model and motor skills necessary to practice percutaneous procedures successfully.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Flujo Optico Límite: Humans Idioma: En Revista: Comput Biol Med Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Flujo Optico Límite: Humans Idioma: En Revista: Comput Biol Med Año: 2024 Tipo del documento: Article