Your browser doesn't support javascript.
loading
Improved accuracy and efficiency of primary care fall risk screening of older adults using a machine learning approach.
Song, Wenyu; Latham, Nancy K; Liu, Luwei; Rice, Hannah E; Sainlaire, Michael; Min, Lillian; Zhang, Linying; Thai, Tien; Kang, Min-Jeoung; Li, Siyun; Tejeda, Christian; Lipsitz, Stuart; Samal, Lipika; Carroll, Diane L; Adkison, Lesley; Herlihy, Lisa; Ryan, Virginia; Bates, David W; Dykes, Patricia C.
Afiliación
  • Song W; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
  • Latham NK; Harvard Medical School, Boston, Massachusetts, USA.
  • Liu L; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
  • Rice HE; Harvard Medical School, Boston, Massachusetts, USA.
  • Sainlaire M; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
  • Min L; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
  • Zhang L; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
  • Thai T; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
  • Kang MJ; Institute for Informatics, Data Science, and Biostatistics, Washington University School of Medicine, St. Louis, Missouri, USA.
  • Li S; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
  • Tejeda C; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
  • Lipsitz S; Harvard Medical School, Boston, Massachusetts, USA.
  • Samal L; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
  • Carroll DL; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
  • Adkison L; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
  • Herlihy L; Harvard Medical School, Boston, Massachusetts, USA.
  • Ryan V; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
  • Bates DW; Harvard Medical School, Boston, Massachusetts, USA.
  • Dykes PC; Yvonne L. Munn Center for Nursing Research, Massachusetts General Hospital, Boston, Massachusetts, USA.
J Am Geriatr Soc ; 72(4): 1145-1154, 2024 Apr.
Article en En | MEDLINE | ID: mdl-38217355
ABSTRACT

BACKGROUND:

While many falls are preventable, they remain a leading cause of injury and death in older adults. Primary care clinics largely rely on screening questionnaires to identify people at risk of falls. Limitations of standard fall risk screening questionnaires include suboptimal accuracy, missing data, and non-standard formats, which hinder early identification of risk and prevention of fall injury. We used machine learning methods to develop and evaluate electronic health record (EHR)-based tools to identify older adults at risk of fall-related injuries in a primary care population and compared this approach to standard fall screening questionnaires.

METHODS:

Using patient-level clinical data from an integrated healthcare system consisting of 16-member institutions, we conducted a case-control study to develop and evaluate prediction models for fall-related injuries in older adults. Questionnaire-derived prediction with three questions from a commonly used fall risk screening tool was evaluated. We then developed four temporal machine learning models using routinely available longitudinal EHR data to predict the future risk of fall injury. We also developed a fall injury-prevention clinical decision support (CDS) implementation prototype to link preventative interventions to patient-specific fall injury risk factors.

RESULTS:

Questionnaire-based risk screening achieved area under the receiver operating characteristic curve (AUC) up to 0.59 with 23% to 33% similarity for each pair of three fall injury screening questions. EHR-based machine learning risk screening showed significantly improved performance (best AUROC = 0.76), with similar prediction performance between 6-month and one-year prediction models.

CONCLUSIONS:

The current method of questionnaire-based fall risk screening of older adults is suboptimal with redundant items, inadequate precision, and no linkage to prevention. A machine learning fall injury prediction method can accurately predict risk with superior sensitivity while freeing up clinical time for initiating personalized fall prevention interventions. The developed algorithm and data science pipeline can impact routine primary care fall prevention practice.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Atención Primaria de Salud / Aprendizaje Automático Tipo de estudio: Diagnostic_studies / Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Aged / Humans Idioma: En Revista: J Am Geriatr Soc Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Atención Primaria de Salud / Aprendizaje Automático Tipo de estudio: Diagnostic_studies / Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Aged / Humans Idioma: En Revista: J Am Geriatr Soc Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos