Your browser doesn't support javascript.
loading
Development of the next-generation functional neuro-cognitive imaging protocol - Part 1: A 3D sliding-window convolutional neural net for automated brain parcellation.
Lorzel, Heath M; Allen, Mark D.
Afiliación
  • Lorzel HM; Cognitive FX, 280 West River Drive, Suite 110, Provo, UT 84604, United States. Electronic address: HLorzel@gmail.com.
  • Allen MD; Cognitive FX, 280 West River Drive, Suite 110, Provo, UT 84604, United States.
Neuroimage ; 286: 120505, 2024 Feb 01.
Article en En | MEDLINE | ID: mdl-38224825
ABSTRACT
Functional MRI has emerged as a powerful tool to assess the severity of Post-concussion syndrome (PCS) and to provide guidance for neuro-cognitive therapists during treatment. The next-generation functional neuro-cognitive imaging protocol (fNCI2) has been developed to provide this assessment. This paper covers the first step in the analysis process, the development of a rapidly re-trainable, machine-learning, brain parcellation tool. The use of a sufficiently deep U-Net architecture encompassing a small (39 × 39 × 39 voxel input, 27 × 27 × 27 voxel output) sliding window to sample the entirety of the 3D image allows for the prediction of the entire image using only a single trained network. A large number of training, validating, and testing windows are thus generated from the 101 manually-labeled Mindboggle images, and full-image prediction is provided via a voxel-vote method using overlapping windows. Our method produces parcellated images that are highly consistent with standard atlas-based methods in under 3 min on a modern GPU, and the single network architecture allows for rapid retraining (<36 hr) as needed.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Encéfalo / Redes Neurales de la Computación Tipo de estudio: Guideline / Prognostic_studies Límite: Humans Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Encéfalo / Redes Neurales de la Computación Tipo de estudio: Guideline / Prognostic_studies Límite: Humans Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2024 Tipo del documento: Article