Your browser doesn't support javascript.
loading
Modeling the feasibility of Se-rich corn cultivation in Se-deficient agricultural fields using random forest algorithm.
Zhang, Jun; Huo, Zhitao; Mao, Cong; Gong, Hao; Dai, Liangliang; Zhang, Hongchao; Wu, Wenbing; Chen, Wei; Luo, Jie; Feng, Siyao.
Afiliación
  • Zhang J; Changsha General Survey of Natural Resources Center, Changsha, China.
  • Huo Z; Changsha General Survey of Natural Resources Center, Changsha, China.
  • Mao C; Changsha General Survey of Natural Resources Center, Changsha, China.
  • Gong H; Changsha General Survey of Natural Resources Center, Changsha, China.
  • Dai L; Changsha General Survey of Natural Resources Center, Changsha, China.
  • Zhang H; Changsha General Survey of Natural Resources Center, Changsha, China.
  • Wu W; Changsha General Survey of Natural Resources Center, Changsha, China.
  • Chen W; Changsha General Survey of Natural Resources Center, Changsha, China.
  • Luo J; College of Resources and Environment, Yangtze University, Wuhan, China.
  • Feng S; College of Resources and Environment, Yangtze University, Wuhan, China. sy15572183610@163.com.
Environ Geochem Health ; 46(2): 46, 2024 Jan 16.
Article en En | MEDLINE | ID: mdl-38227069
ABSTRACT
Selenium constitutes an essential trace element for the human body. Moderate Se intake plays a pivotal role in preserving overall health. The absorption of Se by plants is primarily influenced by the available Se levels in soils, rather than by the soil total Se content, offering potential for exploring Se-rich crops in Se-deficient regions. In this study, we explore the factors influencing the Se bioaccumulation coefficient in corn based on a land quality geochemical survey at a 150,000 scale and establish predictive models for corn seed Se content using random forest and multiple linear regression approaches. The results indicate that the surface soil in the study area is deficient in Se (0.18-1.21 mg/kg), but 54% of the corn grain samples met the standards for Se-rich products (0.02-0.30 mg/kg). The factors influencing the Se biological enrichment coefficient in corn seeds are soil pH and CaO and MgO content, with impact levels of 0.54, 0.42, and 0.35, respectively. Compared to multiple linear regression models, the RF model provides more accurate and reliable predictions of corn Se content. The random forest model indicates that approximately 41% of the farmland within the study area is conducive to the cultivation of naturally Se-rich corn, which is a 26% increase in the planting area compared to recommendations based solely on soil Se content. In this research, we introduce an innovative methodological framework for organically cultivating naturally Se-rich corn within regions affected by Se deficiency.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Zea mays / Bosques Aleatorios Tipo de estudio: Clinical_trials / Prognostic_studies Límite: Humans Idioma: En Revista: Environ Geochem Health Asunto de la revista: QUIMICA / SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Zea mays / Bosques Aleatorios Tipo de estudio: Clinical_trials / Prognostic_studies Límite: Humans Idioma: En Revista: Environ Geochem Health Asunto de la revista: QUIMICA / SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China