Your browser doesn't support javascript.
loading
Artificial intelligence for drug discovery and development in Alzheimer's disease.
Qiu, Yunguang; Cheng, Feixiong.
Afiliación
  • Qiu Y; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA. Electronic address: https://twitter.com/YunguangQiu.
  • Cheng F; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA. Electronic address: chengf@ccf.org.
Curr Opin Struct Biol ; 85: 102776, 2024 04.
Article en En | MEDLINE | ID: mdl-38335558
ABSTRACT
The complex molecular mechanism and pathophysiology of Alzheimer's disease (AD) limits the development of effective therapeutics or prevention strategies. Artificial Intelligence (AI)-guided drug discovery combined with genetics/multi-omics (genomics, epigenomics, transcriptomics, proteomics, and metabolomics) analysis contributes to the understanding of the pathophysiology and precision medicine of the disease, including AD and AD-related dementia. In this review, we summarize the AI-driven methodologies for AD-agnostic drug discovery and development, including de novo drug design, virtual screening, and prediction of drug-target interactions, all of which have shown potentials. In particular, AI-based drug repurposing emerges as a compelling strategy to identify new indications for existing drugs for AD. We provide several emerging AD targets from human genetics and multi-omics findings and highlight recent AI-based technologies and their applications in drug discovery using AD as a prototypical example. In closing, we discuss future challenges and directions in AI-based drug discovery for AD and other neurodegenerative diseases.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Enfermedad de Alzheimer Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Curr Opin Struct Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Enfermedad de Alzheimer Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Curr Opin Struct Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article