Your browser doesn't support javascript.
loading
Molecular mechanism for the unusual enhancement of the second-step chemiluminescence production from the carcinogenic tetrabromohydroquinone and H2O2.
Wang, Zi-Han; Huang, Chun-Hua; Liu, Zhi-Sheng; Mao, Li; Zhu, Ben-Zhan.
Afiliación
  • Wang ZH; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Huang CH; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Liu ZS; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Mao L; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: limao@rce
  • Zhu BZ; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: bzhu@rcee
J Environ Sci (China) ; 141: 330-342, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38408832
ABSTRACT
We have found recently that two-step intrinsic hydroxyl radical (·OH)-dependent chemiluminescence (CL) could be produced by carcinogenic tetrahaloquinone and H2O2. However, the first-step CL was too fast to clearly detect the stepwise generation of ·OH and CL, and to distinguish the exact dividing point between the first-step and second-step CL. Here we found that, extremely clear two-step intrinsic CL could be produced by the relative slow reaction of tetrabromohydroquinone (TBHQ) with H2O2, which was directly dependent on the two-step ·OH generation. Interestingly, the second-step, but not the first-step CL production of TBHQ/H2O2 (CRET donor) was markedly enhanced by fluorescein (a typical xanthene dye, CRET acceptor) through a unique chemiluminescence resonance energy transfer (CRET) process. The novel CRET system of TBHQ/H2O2/fluorescein was successfully applied for the sensitive detection of TBHQ with the detection limit as low as 2.5 µmol/L. These findings will help to develop more sensitive and highly efficient CL or CRET systems and specific CL sensor to detect the carcinogenic haloquinones, which may have broad environmental applications.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Carcinógenos / Luminiscencia / Hidroquinonas Idioma: En Revista: J Environ Sci (China) Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Carcinógenos / Luminiscencia / Hidroquinonas Idioma: En Revista: J Environ Sci (China) Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China