Your browser doesn't support javascript.
loading
Advanced TiO2/Al2O3 Bilayer ALD Coatings for Improved Lithium-Rich Layered Oxide Electrodes.
Chen, Wei-Ming; Hsieh, Hsin-Yu; Wu, Dong-Ze; Tang, Horng-Yi; Chang-Liao, Kuei-Shu; Chi, Po-Wei; Wu, Phillip M; Wu, Maw-Kuen.
Afiliación
  • Chen WM; Institute of Physics, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan.
  • Hsieh HY; Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Tsing Hua University, 128, Section 2, Academia Road, Taipei 11529, Taiwan.
  • Wu DZ; Department of Engineering and System Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan.
  • Tang HY; Institute of Physics, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan.
  • Chang-Liao KS; Institute of Physics, Academia Sinica, 128, Section 2, Academia Road, Taipei 11529, Taiwan.
  • Chi PW; Graduate Institute of Energy and Sustainability Technology, National Taiwan University of Science and Technology, 43 Keelung Road, Sec 4, Taipei 10607, Taiwan.
  • Wu PM; Department of Applied Chemistry, National Chi Nan University, 1 University Road, Puli, Nantou 545301, Taiwan.
  • Wu MK; Department of Engineering and System Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan.
ACS Appl Mater Interfaces ; 16(10): 13029-13040, 2024 Mar 13.
Article en En | MEDLINE | ID: mdl-38422346
ABSTRACT
Surface modification is a highly effective strategy for addressing issues in lithium-rich layered oxide (LLO) cathodes, including phase transformation, particle cracking, oxygen gas release, and transition-metal ion dissolution. Existing single-/double-layer coating strategies face drawbacks such as poor component contact and complexity. Herein, we present the results of a low-temperature atomic layer deposition (ALD) process for creating a TiO2/Al2O3 bilayer on composite cathodes made of AS200 (Li1.08Ni0.34Co0.08Mn0.5O2). Electrochemical analysis demonstrates that TiO2/Al2O3-coated LLO electrodes exhibit improved discharge capacities and enhanced capacity retention compared with uncoated samples. The TAA-5/AS200 bilayer-coated electrode, in particular, demonstrates exceptional capacity retention (∼90.4%) and a specific discharge capacity of 146 mAh g-1 after 100 cycles at 1C within the voltage range of 2.2 to 4.6 V. The coated electrodes also show reduced voltage decay, lower surface film resistance, and improved interfacial charge transfer resistances, contributing to enhanced stability. The ALD-deposited TiO2/Al2O3 bilayer coatings exhibit promising potential for advancing the electrochemical performance of lithium-rich layered oxide cathodes in lithium-ion batteries.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Taiwán