Your browser doesn't support javascript.
loading
Integrated frequency-modulated optical parametric oscillator.
Stokowski, Hubert S; Dean, Devin J; Hwang, Alexander Y; Park, Taewon; Celik, Oguz Tolga; McKenna, Timothy P; Jankowski, Marc; Langrock, Carsten; Ansari, Vahid; Fejer, Martin M; Safavi-Naeini, Amir H.
Afiliación
  • Stokowski HS; Department of Applied Physics and Ginzton Laboratory, Stanford University, Stanford, CA, USA.
  • Dean DJ; Department of Applied Physics and Ginzton Laboratory, Stanford University, Stanford, CA, USA.
  • Hwang AY; Department of Applied Physics and Ginzton Laboratory, Stanford University, Stanford, CA, USA.
  • Park T; Department of Applied Physics and Ginzton Laboratory, Stanford University, Stanford, CA, USA.
  • Celik OT; Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
  • McKenna TP; Department of Applied Physics and Ginzton Laboratory, Stanford University, Stanford, CA, USA.
  • Jankowski M; Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
  • Langrock C; Department of Applied Physics and Ginzton Laboratory, Stanford University, Stanford, CA, USA.
  • Ansari V; Physics and Informatics Laboratories, NTT Research, Sunnyvale, CA, USA.
  • Fejer MM; Department of Applied Physics and Ginzton Laboratory, Stanford University, Stanford, CA, USA.
  • Safavi-Naeini AH; Physics and Informatics Laboratories, NTT Research, Sunnyvale, CA, USA.
Nature ; 627(8002): 95-100, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38448697
ABSTRACT
Optical frequency combs have revolutionized precision measurement, time-keeping and molecular spectroscopy1-7. A substantial effort has developed around 'microcombs' integrating comb-generating technologies into compact photonic platforms5,7-9. Current approaches for generating these microcombs involve either the electro-optic10 or Kerr mechanisms11. Despite rapid progress, maintaining high efficiency and wide bandwidth remains challenging. Here we introduce a previously unknown class of microcomb-an integrated device that combines electro-optics and parametric amplification to yield a frequency-modulated optical parametric oscillator (FM-OPO). In contrast to the other solutions, it does not form pulses but maintains operational simplicity and highly efficient pump power use with an output resembling a frequency-modulated laser12. We outline the working principles of our device and demonstrate it by fabricating the complete optical system in thin-film lithium niobate. We measure pump-to-comb internal conversion efficiency exceeding 93% (34% out-coupled) over a nearly flat-top spectral distribution spanning about 200 modes (over 1 THz). Compared with an electro-optic comb, the cavity dispersion rather than loss determines the FM-OPO bandwidth, enabling broadband combs with a smaller radio-frequency modulation power. The FM-OPO microcomb offers robust operational dynamics, high efficiency and broad bandwidth, promising compact precision tools for metrology, spectroscopy, telecommunications, sensing and computing.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nature Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos