Your browser doesn't support javascript.
loading
Low frequency stimulation for seizure suppression: Identification of optimal targets in the entorhinal-hippocampal circuit.
Kleis, Piret; Paschen, Enya; Häussler, Ute; Haas, Carola A.
Afiliación
  • Kleis P; Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany.
  • Paschen E; Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany.
  • Häussler U; Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany.
  • Haas CA; Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany. Electronic address: carola.haas@uniklinik-freiburg.de.
Brain Stimul ; 17(2): 395-404, 2024.
Article en En | MEDLINE | ID: mdl-38531502
ABSTRACT

BACKGROUND:

Mesial temporal lobe epilepsy (MTLE) with hippocampal sclerosis (HS) is a common form of drug-resistant focal epilepsy in adults. Treatment for pharmacoresistant patients remains a challenge, with deep brain stimulation (DBS) showing promise for alleviating intractable seizures. This study explores the efficacy of low frequency stimulation (LFS) on specific neuronal targets within the entorhinal-hippocampal circuit in a mouse model of MTLE.

OBJECTIVE:

Our previous research demonstrated that LFS of the medial perforant path (MPP) fibers in the sclerotic hippocampus reduced seizures in epileptic mice. Here, we aimed to identify the critical neuronal population responsible for this antiepileptic effect by optogenetically stimulating presynaptic and postsynaptic compartments of the MPP-dentate granule cell (DGC) synapse at 1 Hz. We hypothesize that specific targets for LFS can differentially influence seizure activity depending on the cellular identity and location within or outside the seizure focus.

METHODS:

We utilized the intrahippocampal kainate (ihKA) mouse model of MTLE and targeted specific neural populations using optogenetic stimulation. We recorded intracranial neuronal activity from freely moving chronically epileptic mice with and without optogenetic LFS up to 3 h.

RESULTS:

We found that LFS of MPP fibers in the sclerotic hippocampus effectively suppressed epileptiform activity while stimulating principal cells in the MEC had no impact. Targeting DGCs in the sclerotic septal or non-sclerotic temporal hippocampus with LFS did not reduce seizure numbers but shortened the epileptiform bursts.

CONCLUSION:

Presynaptic stimulation of the MPP-DGC synapse within the sclerotic hippocampus is critical for seizure suppression via LFS.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Convulsiones / Corteza Entorrinal / Estimulación Encefálica Profunda / Epilepsia del Lóbulo Temporal / Hipocampo Límite: Animals Idioma: En Revista: Brain Stimul / Brain stimul / Brain stimulation (Print) Asunto de la revista: CEREBRO Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Convulsiones / Corteza Entorrinal / Estimulación Encefálica Profunda / Epilepsia del Lóbulo Temporal / Hipocampo Límite: Animals Idioma: En Revista: Brain Stimul / Brain stimul / Brain stimulation (Print) Asunto de la revista: CEREBRO Año: 2024 Tipo del documento: Article País de afiliación: Alemania