Your browser doesn't support javascript.
loading
Development of Anisotropic Electrically Conductive GNP-Reinforced PCL-Collagen Scaffold for Enhanced Neurogenic Differentiation under Electrical Stimulation.
Ghosh, Souvik; Roy, Partha; Lahiri, Debrupa.
Afiliación
  • Ghosh S; Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India.
  • Roy P; Molecular Endocrinology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India.
  • Lahiri D; Centre of Nanotechnology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India.
Chem Asian J ; 19(9): e202400061, 2024 May 02.
Article en En | MEDLINE | ID: mdl-38547362
ABSTRACT
The internal electric field of the human body plays a crucial role in regulating various biological processes, such as, cellular interactions, embryonic development and the healing process. Electrical stimulation (ES) modulates cytoskeleton and calcium ion activities to restore nervous system functioning. When exposed to electrical fields, stem cells respond similarly to neurons, muscle cells, blood vessel linings, and connective tissue (fibroblasts), depending on their environment. This study develops cost-effective electroconductive scaffolds for regenerative therapy. This was achieved by incorporating carboxy functionalized graphene nanoplatelets (GNPs) into a Polycaprolactone (PCL)-collagen matrix. ES was used to assess the scaffolds' propensity to boost neuronal differentiation from MSCs. This study reported that aligned GNP-reinforced PCL-Collagen scaffolds demonstrate substantial MSC differentiation with ES. This work effectively develops scaffolds using a simple, cost-effective synthesis approach. The direct coupling approach generated a homogeneous electric field to stimulate cells cultured on GNP-reinforced scaffolds. The scaffolds exhibited improved mechanical and electrical characteristics, as a result of the reinforcement with carbon nanofillers. In vitro results suggest that electrical stimulation helps differentiation of mesenchymal stem-like cells (MSC-like) towards neuronal. This finding holds great potential for the development of effective treatments for tissue injuries related to the nervous system.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Poliésteres / Diferenciación Celular / Colágeno / Estimulación Eléctrica / Andamios del Tejido / Células Madre Mesenquimatosas / Grafito Límite: Animals / Humans Idioma: En Revista: Chem Asian J Año: 2024 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Poliésteres / Diferenciación Celular / Colágeno / Estimulación Eléctrica / Andamios del Tejido / Células Madre Mesenquimatosas / Grafito Límite: Animals / Humans Idioma: En Revista: Chem Asian J Año: 2024 Tipo del documento: Article País de afiliación: India