Your browser doesn't support javascript.
loading
Tailoring Localized Electrolyte via a Dual-Functional Protein Membrane toward Stable Zn Anodes.
Guo, Wenyi; Xu, Liang; Su, Yiwen; Tian, Zhengnan; Qiao, Changpeng; Zou, Yuhan; Chen, Ziang; Yang, Xianzhong; Cheng, Tao; Sun, Jingyu.
Afiliación
  • Guo W; College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, People's Republic of China.
  • Xu L; Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People's Republic of China.
  • Su Y; College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, People's Republic of China.
  • Tian Z; Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
  • Qiao C; College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, People's Republic of China.
  • Zou Y; College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, People's Republic of China.
  • Chen Z; College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, People's Republic of China.
  • Yang X; Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China.
  • Cheng T; Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, People's Republic of China.
  • Sun J; College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, People's Republic of China.
ACS Nano ; 18(15): 10642-10652, 2024 Apr 16.
Article en En | MEDLINE | ID: mdl-38560784
ABSTRACT
Considerable attention has been by far paid to stabilizing metallic Zn anodes, where side reactions and dendrite formation still remain detrimental to their practical advancement. Electrolyte modification or protected layer design is widely reported; nonetheless, an effective maneuver to synergize both tactics has been rarely explored. Herein, we propose a localized electrolyte optimization via the introduction of a dual-functional biomass modificator over the Zn anode. Instrumental characterization in conjunction with molecular dynamics simulation indicates local solvation structure transformation owing to the limitation of bound water with intermolecular hydrogen bonds, effectively suppressing hydrogen evolutions. Meanwhile, the optimized nucleation throughout the protein membrane allows uniform Zn deposition. Accordingly, the symmetric cell exhibits an elongated lifespan of 3280 h at 1.0 mA cm-2/1.0 mAh cm-2, while the capacity retention of the full cell sustains 91.1% after 2000 cycles at 5.0 A g-1. The localized electrolyte tailoring via protein membrane introduction might offer insights into operational metal anode protection.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article