Your browser doesn't support javascript.
loading
Transforming layered 2D mats into multiphasic 3D nanofiber scaffolds with tailored gradient features for tissue regeneration.
Shahriar, S M Shatil; Polavoram, Navatha Shree; Andrabi, Syed Muntazir; Su, Yajuan; Lee, Donghee; Tran, Huy Quang; Schindler, Samantha J; Xie, Jingwei.
Afiliación
  • Shahriar SMS; Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
  • Polavoram NS; Eppley Institute for Research in Cancer and Allied Diseases, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
  • Andrabi SM; Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
  • Su Y; Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
  • Lee D; Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
  • Tran HQ; Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
  • Schindler SJ; Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
  • Xie J; Department of Surgery - Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
BMEmat ; 2(1)2024 Feb.
Article en En | MEDLINE | ID: mdl-38586163
ABSTRACT
Multiphasic scaffolds with tailored gradient features hold significant promise for tissue regeneration applications. Herein, this work reports the transformation of two-dimensional (2D) layered fiber mats into three dimensional (3D) multiphasic scaffolds using a 'solids-of-revolution' inspired gas-foaming expansion technology. These scaffolds feature precise control over fiber alignment, pore size, and regional structure. Manipulating nanofiber mat layers and Pluronic F127 concentrations allows further customization of pore size and fiber alignment within different scaffold regions. The cellular response to multiphasic scaffolds demonstrates the number of cells migrated and proliferated onto the scaffolds are mainly dependent on the pore size rather than fiber alignment. In vivo subcutaneous implantation of multiphasic scaffolds to rats reveals substantial cell infiltration, neo tissue formation, collagen deposition, and new vessel formation within scaffolds, greatly surpassing the capabilities of traditional nanofiber mats. Histological examination indicates the importance of optimizing pore size and fiber alignment for promotion of cell infiltration and tissue regeneration. Overall, these scaffolds have potential applications in tissue modeling, studying tissue-tissue interactions, interface tissue engineering, and high-throughput screening for optimized tissue regeneration.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: BMEmat Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: BMEmat Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos