Your browser doesn't support javascript.
loading
Ultra-low frequency magnetic energy focusing for highly effective wireless powering of deep-tissue implantable electronic devices.
Li, Yuanyuan; Chen, Zhipeng; Liu, Yuxin; Liu, Zijian; Wu, Tong; Zhang, Yuanxi; Peng, Lelun; Huang, Xinshuo; Huang, Shuang; Lin, Xudong; Xie, Xi; Jiang, Lelun.
Afiliación
  • Li Y; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
  • Chen Z; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
  • Liu Y; School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China.
  • Liu Z; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
  • Wu T; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
  • Zhang Y; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
  • Peng L; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
  • Huang X; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
  • Huang S; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China.
  • Lin X; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China.
  • Xie X; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
  • Jiang L; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China.
Natl Sci Rev ; 11(5): nwae062, 2024 May.
Article en En | MEDLINE | ID: mdl-38628571
ABSTRACT
The limited lifespan of batteries is a challenge in the application of implantable electronic devices. Existing wireless power technologies such as ultrasound, near-infrared light and magnetic fields cannot charge devices implanted in deep tissues, resulting in energy attenuation through tissues and thermal generation. Herein, an ultra-low frequency magnetic energy focusing (ULFMEF) methodology was developed for the highly effective wireless powering of deep-tissue implantable devices. A portable transmitter was used to output the low-frequency magnetic field (<50 Hz), which remotely drives the synchronous rotation of a magnetic core integrated within the pellet-like implantable device, generating an internal rotating magnetic field to induce wireless electricity on the coupled coils of the device. The ULFMEF can achieve energy transfer across thick tissues (up to 20 cm) with excellent transferred power (4-15 mW) and non-heat effects in tissues, which is remarkably superior to existing wireless powering technologies. The ULFMEF is demonstrated to wirelessly power implantable micro-LED devices for optogenetic neuromodulation, and wirelessly charged an implantable battery for programmable electrical stimulation on the sciatic nerve. It also bypassed thick and tough protective shells to power the implanted devices. The ULFMEF thus offers a highly advanced methodology for the generation of wireless powered biodevices.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Natl Sci Rev Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Natl Sci Rev Año: 2024 Tipo del documento: Article País de afiliación: China