Your browser doesn't support javascript.
loading
Inverse Design of Photonic Surfaces via High throughput Femtosecond Laser Processing and Tandem Neural Networks.
Park, Minok; Grbcic, Luka; Motameni, Parham; Song, Spencer; Singh, Alok; Malagrino, Dante; Elzouka, Mahmoud; Vahabi, Puya H; Todeschini, Alberto; de Jong, Wibe Albert; Prasher, Ravi; Zorba, Vassilia; Lubner, Sean D.
Afiliación
  • Park M; Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Grbcic L; Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Motameni P; School of Information, University of California at Berkeley, Berkeley, CA, 94709, USA.
  • Song S; School of Information, University of California at Berkeley, Berkeley, CA, 94709, USA.
  • Singh A; Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Malagrino D; School of Information, University of California at Berkeley, Berkeley, CA, 94709, USA.
  • Elzouka M; Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Vahabi PH; School of Information, University of California at Berkeley, Berkeley, CA, 94709, USA.
  • Todeschini A; School of Computer Science & Information Technology, Lucerne University of Applied Sciences and Arts, Lucerne, 6343, Switzerland.
  • de Jong WA; Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Prasher R; Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Zorba V; Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, 94709, USA.
  • Lubner SD; Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Adv Sci (Weinh) ; 11(26): e2401951, 2024 Jul.
Article en En | MEDLINE | ID: mdl-38685587
ABSTRACT
This work demonstrates a method to design photonic surfaces by combining femtosecond laser processing with the inverse design capabilities of tandem neural networks that directly link laser fabrication parameters to their resulting textured substrate optical properties. High throughput fabrication and characterization platforms are developed that generate a dataset comprising 35280 unique microtextured surfaces on stainless steel with corresponding measured spectral emissivities. The trained model utilizes the nonlinear one-to-many mapping between spectral emissivity and laser parameters. Consequently, it generates predominantly novel designs, which reproduce the full range of spectral emissivities (average root-mean-squared-error < 2.5%) using only a compact region of laser parameter space 25 times smaller than what is represented in the training data. Finally, the inverse design model is experimentally validated on a thermophotovoltaic emitter design application. By synergizing laser-matter interactions with neural network capabilities, the approach offers insights into accelerating the discovery of photonic surfaces, advancing energy harvesting technologies.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos