Your browser doesn't support javascript.
loading
Potential treatment of squamous cell carcinoma by targeting heparin-binding protein 17/fibroblast growth factor-binding protein 1 with vitamin D3 or eldecalcitol.
Shintani, Tomoaki; Higaki, Mirai; Rosli, Siti Nur Zawani; Okamoto, Tetsuji.
Afiliación
  • Shintani T; Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, 734-8551, Japan. tshintan@hiroshima-u.ac.jp.
  • Higaki M; Department of Molecular Oral Medicine and Maxilofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan.
  • Rosli SNZ; Department of Molecular Oral Medicine and Maxilofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan.
  • Okamoto T; Infectious Disease Research Center, Institute for Medical Research, Bacteriology Unit, National Institutes of Health, Ministry of Health Malaysia, 40170, Setia Alam, Malaysia.
In Vitro Cell Dev Biol Anim ; 60(6): 583-589, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38713345
ABSTRACT
Heparin-binding protein 17 (HBp17), first purified in 1991 from the conditioned medium of the human A431 squamous cell carcinoma (SCC) cell line, was later renamed fibroblast growth factor-binding protein 1 (FGFBP-1). HBp17/FGFBP-1 is specifically expressed and secreted by epithelial cells, and it reversibly binds to fibroblast growth factor (FGF)-1 and FGF-2, as well as FGFs-7, -10, and -22, indicating a crucial involvement in the transportation and function of these FGFs. Our laboratory has investigated and reported several studies to elucidate the function of HBp17/FGFBP-1 in SCC cells and its potential as a molecular therapeutic target. HBp17/FGFBP-1 transgene exoression in A431-4 cells, a clonal subline of A431 that lacks tumorigenicity and does not express HBp17/FGFBP-1, demonstrated a significantly enhanced proliferation in vitro compared with A431-4 cells, and it acquired tumorigenicity in the subcutis of nude mice. Knockout (KO) of the HBp17/FGFBP-1 by genome editing significantly suppressed tumor growth, cell motility, and tumorigenicity compared with control cells. A comprehensive analysis of expressed molecules in both cell types revealed that molecules that promote epithelial cell differentiation were highly expressed in HBp17/FGFBP-1 KO cells. Additionally, we reported that 1α,25(OH)2D3 or eldecalcitol (ED-71), which is an analog of 1α,25(OH)2D3, suppresses HBp17/FGFBP-1 expression and tumor growth in vitro and in vivo by inhibiting the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway. Here, we discuss the prospects of molecular targeted therapy targeting HBp17/FGFBP-1 with 1α,25(OH)2D3 or ED71 in SCC and oral SCC.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Carcinoma de Células Escamosas Límite: Animals / Humans Idioma: En Revista: In Vitro Cell Dev Biol Anim Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Carcinoma de Células Escamosas Límite: Animals / Humans Idioma: En Revista: In Vitro Cell Dev Biol Anim Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Japón