Your browser doesn't support javascript.
loading
Enhanced stability and kinetic performance of sandwich Si anode constructed by carbon nanotube and silicon carbide for lithium-ion battery.
Di, Fang; Gu, Xin; Chu, Yang; Li, Lixiang; Geng, Xin; Sun, Chengguo; Zhou, Weimin; Zhang, Han; Zhao, Hongwei; Tao, Lin; Jiang, Guangshen; Zhang, Xueyuan; An, Baigang.
Afiliación
  • Di F; Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, Liaoning, China.
  • Gu X; Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, Liaoning, China; Liaoning Light Industry Institute Co., Ltd., 46 Taishan Road, Shenyang 110031, Liaoning, C
  • Chu Y; Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, Liaoning, China.
  • Li L; Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, Liaoning, China. Electronic address: lxli2005@126.com.
  • Geng X; Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, Liaoning, China.
  • Sun C; Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, Liaoning, China.
  • Zhou W; Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, Liaoning, China.
  • Zhang H; Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, Liaoning, China.
  • Zhao H; Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, Liaoning, China.
  • Tao L; Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, Liaoning, China.
  • Jiang G; Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, Liaoning, China.
  • Zhang X; Institute of Corrosion Science and Technology, 136 Kaiyuan Road, Guangzhou 510530, Guangdong, China.
  • An B; Key Laboratory of Energy Materials and Electrochemistry Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshanzhong Road, Anshan 114051, Liaoning, China; Institute of Corrosion Science and Technology, 136 Kaiyuan Road, Guangzhou 510530, Guangdo
J Colloid Interface Sci ; 670: 204-214, 2024 Sep 15.
Article en En | MEDLINE | ID: mdl-38761573
ABSTRACT
Owing to highly theoretical capacity of 3579 mAh/g for lithium-ion storage at ambient temperature, silicon (Si) becomes a promising anode material of high-performance lithium-ion batteries (LIBs). However, the large volume change (∼300 %) during lithiation/delithiation and low conductivity of Si are challenging the commercial developments of LIBs with Si anode. Herein, a sandwich structure anode that Si nanoparticles sandwiched between carbon nanotube (CNT) and silicon carbide (SiC) has been successfully constructed by acetylene chemical vapor deposition and magnesiothermic reduction reaction technology. The SiC acts as a stiff layer to inhibit the volumetric stress from Si and the inner graphited CNT plays as the matrix to cushion the volumetric stress and as the conductor to transfer electrons. Moreover, the combination of SiC and CNT can relax the surface stress of carbonaceous interface to synergistically prevent the integrated structure from the degradation to avoid the solid electrolyte interface (SEI) reorganization. In addition, the SiC (111) surface has a strong ability to adsorb fluoroethylene carbonate molecule to further stabilize the SEI. Consequently, the CNT/SiNPs/SiC anode can stably supply the capacity of 1127.2 mAh/g at 0.5 A/g with a 95.6 % capacity retention rate after 200 cycles and an excellent rate capability of 745.5 mAh/g at 4.0 A/g and 85.5 % capacity retention rate after 1000 cycles. The present study could give a guide to develop the functional Si anode through designing a multi-interface with heterostructures.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article País de afiliación: China