Your browser doesn't support javascript.
loading
Coordinated d-p hybridized hcp@fcc NiRu alloy doped by interstitial atoms for boosting urea-assisted simulated seawater electrolysis at industrial current densities.
Zhou, Xiaofei; Wei, Guijuan; Liu, Chang; Zhao, Qian; Gao, Hui; Wang, Wenbo; Zhao, Xixia; Zhao, Xin; Chen, Honglei.
Afiliación
  • Zhou X; State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
  • Wei G; State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China. Electronic address: weiguijuan@qlu.edu.cn.
  • Liu C; State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
  • Zhao Q; State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
  • Gao H; State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
  • Wang W; State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
  • Zhao X; State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China. Electronic address: zhaoxixia@qlu.edu.cn.
  • Zhao X; State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China. Electronic address: zhaoxin_zixi@126.com.
  • Chen H; State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
J Colloid Interface Sci ; 670: 709-718, 2024 Sep 15.
Article en En | MEDLINE | ID: mdl-38788438
ABSTRACT
The production of hydrogen through seawater electrolysis has recently garnered increasing concern. However, hydrogen evolution reaction (HER) by alkaline seawater electrocatalysis is severely impeded by the slow H2O adsorption and H* binding kinetics at industrial current densities. Herein, a face-centered cubic/hexagonal close packed (fcc/hcp) NiRu alloy heterojunction was fabricated on Ni foam (N doped NiRu-inf/NF) by a low-temperature nitrogen plasma activation. Simultaneously, nitrogen atoms are introduced into the alloy to facilitate d-p hybridization. When N doped NiRu-inf/NF is integrated into a dual-electrode cell for urea-assisted seawater electrolysis, it achieves 100 mA cm-2 with an ultra-low voltage of 1.36 V and excellent stability. Density functional theory (DFT) verifies that the robust d-p hybridization among Ni, Ru and N exhibits more energy level matching for H2O molecule adsorption at the Ru sites, while simultaneously reducing the interaction between H* and Ni sites in N-doped NiRu-inf.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci / J. colloid interface sci / Journal of colloid and interface science Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci / J. colloid interface sci / Journal of colloid and interface science Año: 2024 Tipo del documento: Article País de afiliación: China