Your browser doesn't support javascript.
loading
Molecular orbital breaking in photo-mediated organosilicon Schiff base ferroelectric crystals.
Gu, Zhu-Xiao; Zhang, Nan; Zhang, Yao; Liu, Bin; Jiang, Huan-Huan; Xu, Hua-Ming; Wang, Peng; Jiang, Qing; Xiong, Ren-Gen; Zhang, Han-Yue.
Afiliación
  • Gu ZX; Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P. R. China.
  • Zhang N; Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
  • Zhang Y; Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
  • Liu B; Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P. R. China.
  • Jiang HH; Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
  • Xu HM; Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
  • Wang P; Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P. R. China.
  • Jiang Q; Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
  • Xiong RG; Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P. R. China.
  • Zhang HY; Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China.
Nat Commun ; 15(1): 4416, 2024 May 24.
Article en En | MEDLINE | ID: mdl-38789426
ABSTRACT
Ferroelectric materials, whose electrical polarization can be switched under external stimuli, have been widely used in sensors, data storage, and energy conversion. Molecular orbital breaking can result in switchable structural and physical bistability in ferroelectric materials as traditional spatial symmetry breaking does. Differently, molecular orbital breaking interprets the phase transition mechanism from the perspective of electronics and sheds new light on manipulating the physical properties of ferroelectrics. Here, we synthesize a pair of organosilicon Schiff base ferroelectric crystals, (R)- and (S)-N-(3,5-di-tert-butylbenzylidene)-1-((triphenylsilyl)oxy)ethanamine, which show optically controlled phase transition accompanying the molecular orbital breaking. The molecular orbital breaking is manifested as the breaking and reformation of covalent bonds during the phase transition process, that is, the conversion between C = N and C-O in the enol form and C-N and C = O in the keto form. This process brings about photo-mediated bistability with multiple physical channels such as dielectric, second-harmonic generation, and ferroelectric polarization. This work further explores this newly developed mechanism of ferroelectric phase transition and highlights the significance of photo-mediated ferroelectric materials for photo-controlled smart devices and bio-sensors.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article