Your browser doesn't support javascript.
loading
Molecular dynamics simulations shed light into the donor substrate specificity of vertebrate poly-alpha-2,8-sialyltransferases ST8Sia IV.
Teppa, Roxana Elin; Galuska, Sebastian Peter; Harduin-Lepers, Anne.
Afiliación
  • Teppa RE; Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France. Electronic address: elin.teppa@univ-lille.fr.
  • Galuska SP; Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
  • Harduin-Lepers A; Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France; Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Faculté des sciences et Technologies, Univ. Lille, 59655 Villeneuve d'Ascq, France. Electronic address: anne.harduin-lepers@univ-lille.fr.
Biochim Biophys Acta Gen Subj ; 1868(8): 130647, 2024 Aug.
Article en En | MEDLINE | ID: mdl-38801837
ABSTRACT

BACKGROUND:

Sialic acids are essential monosaccharides influencing several biological processes and disease states. The sialyltransferases catalyze the transfer of Sia residues to glycoconjugates playing critical roles in cellular recognition and signaling. Despite their importance, the molecular mechanisms underlying their substrate specificity, especially between different organisms, remain poorly understood. Recently, the human ST8Sia IV, a key enzyme in the synthesis of polysialic acids, was found to accept only CMP-Neu5Ac as a sugar-donor, whereas the whitefish Coregonus maraena enzyme showed a wider donor substrate specificity, accepting CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn. However, what causes these differences in donor substrate specificity is unknown.

METHODS:

Computational approaches were used to investigate the structural and biochemical determinants of the donor substrate specificity in ST8Sia IV. Accurate structural models of the human and fish ST8Sia IV catalytic domains and their complexes with three sialic acid donors (CMP-Neu5Ac, CMP-Neu5Gc, and CMP-Kdn) were generated. Subsequently, molecular dynamics simulations were conducted to analyze the stability and interactions within these complexes and identify differences in complex stability and substrate binding sites between the two ST8Sia IV.

RESULTS:

Our MD simulations revealed that the human enzyme effectively stabilizes CMP-Neu5Ac, whereas CMP-Neu5Gc and CMP-Kdn are unstable and explore different conformations. In contrast, the fish ST8Sia IV stabilizes all three donor substrates. Based on these data, we identified the key interacting residues for the different Sias parts of the substrate donors. GENERAL

SIGNIFICANCE:

This work advances our knowledge of the enzymatic mechanisms governing sialic acid transfer, shedding light on the evolutionary adaptations of sialyltransferases.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Ácidos Siálicos / Sialiltransferasas / Simulación de Dinámica Molecular Límite: Animals / Humans Idioma: En Revista: Biochim Biophys Acta Gen Subj Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Ácidos Siálicos / Sialiltransferasas / Simulación de Dinámica Molecular Límite: Animals / Humans Idioma: En Revista: Biochim Biophys Acta Gen Subj Año: 2024 Tipo del documento: Article