Your browser doesn't support javascript.
loading
Feasibility of Dark-Field Radiography to Enhance Detection of Nondisplaced Fractures.
Schaff, Florian; Jud, Christoph; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Gleich, Bernhard; Sauter, Andreas; Woertler, Klaus; Thalhammer, Johannes; Meurer, Felix; Neumann, Jan; Pfeiffer, Franz; Pfeiffer, Daniela.
Afiliación
  • Schaff F; From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Mu
  • Jud C; From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Mu
  • Dierolf M; From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Mu
  • Günther B; From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Mu
  • Achterhold K; From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Mu
  • Gleich B; From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Mu
  • Sauter A; From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Mu
  • Woertler K; From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Mu
  • Thalhammer J; From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Mu
  • Meurer F; From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Mu
  • Neumann J; From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Mu
  • Pfeiffer F; From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Mu
  • Pfeiffer D; From the Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str 1, 85748 Garching, Germany (F.S., C.J., M.D., B. Günther, K.A., B. Gleich, J.T., F.P.); Munich Institute of Biomedical Engineering, Technical University of Mu
Radiology ; 311(2): e231921, 2024 May.
Article en En | MEDLINE | ID: mdl-38805732
ABSTRACT
Background Many clinically relevant fractures are occult on conventional radiographs and therefore challenging to diagnose reliably. X-ray dark-field radiography is a developing method that uses x-ray scattering as an additional signal source. Purpose To investigate whether x-ray dark-field radiography enhances the depiction of radiographically occult fractures in an experimental model compared with attenuation-based radiography alone and whether the directional dependence of dark-field signal impacts observer ratings. Materials and Methods Four porcine loin ribs had nondisplaced fractures experimentally introduced. Microstructural changes were visually verified using high-spatial-resolution three-dimensional micro-CT. X-ray dark-field radiographs were obtained before and after fracture, with the before-fracture scans serving as control images. The presence of a fracture was scored by three observers using a six-point scale (6, surely; 5, very likely; 4, likely; 3, unlikely; 2, very unlikely; and 1, certainly not). Differences between scores based on attenuation radiographs alone (n = 96) and based on combined attenuation and dark-field radiographs (n = 96) were evaluated by using the DeLong method to compare areas under the receiver operating characteristic curve. The impact of the dark-field signal directional sensitivity on observer ratings was evaluated using the Wilcoxon test. The dark-field data were split into four groups (24 images per group) according to their sensitivity orientation and tested against each other. Musculoskeletal dark-field radiography was further demonstrated on human finger and foot specimens. Results The addition of dark-field radiographs was found to increase the area under the receiver operating characteristic curve to 1 compared with an area under the receiver operating characteristic curve of 0.87 (95% CI 0.80, 0.94) using attenuation-based radiographs alone (P < .001). There were similar observer ratings for the four different dark-field sensitivity orientations (P = .16-.65 between the groups). Conclusion These results suggested that the inclusion of dark-field radiography has the potential to help enhance the detection of nondisplaced fractures compared with attenuation-based radiography alone. © RSNA, 2024 See also the editorial by Rubin in this issue.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Estudios de Factibilidad Límite: Animals Idioma: En Revista: Radiology Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Estudios de Factibilidad Límite: Animals Idioma: En Revista: Radiology Año: 2024 Tipo del documento: Article