Your browser doesn't support javascript.
loading
Nobiletin enhances the antifungal activity of eugenol nanoemulsion against Penicillium italicum in both in vitro and in vivo settings.
Liu, Yanchi; Zhao, Lintao; Chen, Hongyang; Ye, Zimao; Guo, Long; Zhou, Zhiqin.
Afiliación
  • Liu Y; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China.
  • Zhao L; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China.
  • Chen H; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China.
  • Ye Z; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China.
  • Guo L; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China.
  • Zhou Z; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; The Southwest Institute of Fruits Nutrition, Banan District, Chongqing 400054, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), South
Int J Food Microbiol ; 420: 110769, 2024 Aug 02.
Article en En | MEDLINE | ID: mdl-38823189
ABSTRACT
The study prepared and used eugenol nanoemulsion loaded with nobiletin as fungistat to study its antifungal activity and potential mechanism of Penicillium italicum (P. italicum). The results showed that the minimum inhibitory concentration (MIC) of eugenol nanoemulsion loaded with nobiletin (EGN) was lower than that of pure eugenol nanoemulsion (EG), which were 160 µg/mL and 320 µg/mL, respectively. At the same time, the mycelial growth inhibition rate of EGN nanoemulsion (54.68 %) was also higher than that of EG nanoemulsion (9.92 %). This indicates that EGN nanoemulsion is more effective than EG nanoemulsion. Compared with EG nanoemulsion, the treatment of EGN nanoemulsion caused more serious damage to the cell structure of P. italicum. At the same time, in vitro inoculation experiments found that EGN nanoemulsion has better control and delay the growth and reproduction of P. italicum in citrus fruits. And the results reflected that EGN nanoemulsion may be considered as potential resouces of natural antiseptic to inhibit blue mold disease of citrus fruits, because it has good antifungal activity.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Penicillium / Eugenol / Pruebas de Sensibilidad Microbiana / Citrus / Flavonas / Emulsiones / Antifúngicos Idioma: En Revista: Int J Food Microbiol Asunto de la revista: CIENCIAS DA NUTRICAO / MICROBIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Penicillium / Eugenol / Pruebas de Sensibilidad Microbiana / Citrus / Flavonas / Emulsiones / Antifúngicos Idioma: En Revista: Int J Food Microbiol Asunto de la revista: CIENCIAS DA NUTRICAO / MICROBIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China