Your browser doesn't support javascript.
loading
Single Cell Profiling Distinguishes Leukemia-Selective Chemotypes.
Thirman, Hannah L; Hayes, Madeline J; Brown, Lauren E; Porco, John A; Irish, Jonathan M.
Afiliación
  • Thirman HL; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
  • Hayes MJ; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
  • Brown LE; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA.
  • Porco JA; Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN, USA.
  • Irish JM; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
bioRxiv ; 2024 May 03.
Article en En | MEDLINE | ID: mdl-38826485
ABSTRACT
A central challenge in chemical biology is to distinguish molecular families in which small structural changes trigger large changes in cell biology. Such families might be ideal scaffolds for developing cell-selective chemical effectors - for example, molecules that activate DNA damage responses in malignant cells while sparing healthy cells. Across closely related structural variants, subtle structural changes have the potential to result in contrasting bioactivity patterns across different cell types. Here, we tested a 600-compound Diversity Set of screening molecules from the Boston University Center for Molecular Discovery (BU-CMD) in a novel phospho-flow assay that tracked fundamental cell biological processes, including DNA damage response, apoptosis, M-phase cell cycle, and protein synthesis in MV411 leukemia cells. Among the chemotypes screened, synthetic congeners of the rocaglate family were especially bioactive. In follow-up studies, 37 rocaglates were selected and deeply characterized using 12 million additional cellular measurements across MV411 leukemia cells and healthy peripheral blood mononuclear cells. Of the selected rocaglates, 92% displayed significant bioactivity in human cells, and 65% selectively induced DNA damage responses in leukemia and not healthy human blood cells. Furthermore, the signaling and cell-type selectivity were connected to structural features of rocaglate subfamilies. In particular, three rocaglates from the rocaglate pyrimidinone (RP) structural subclass were the only molecules that activated exceptional DNA damage responses in leukemia cells without activating a detectable DNA damage response in healthy cells. These results indicate that the RP subset should be extensively characterized for anticancer therapeutic potential as it relates to the DNA damage response. This single cell profiling approach advances a chemical biology platform to dissect how systematic variations in chemical structure can profoundly and differentially impact basic functions of healthy and diseased cells.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos