Your browser doesn't support javascript.
loading
Impact of the thermo-alkaline pretreatment on the anaerobic digestion of poly(butylene adipate-co-terephthalate) (PBAT) and poly(lactic acid) (PLA) blended plastics.
Nie, Rong; Peng, Wei; Lü, Fan; Zhang, Hua; Lu, Xiangyu; He, Pinjing.
Afiliación
  • Nie R; Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
  • Peng W; Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address: weipeng@tongji.edu.cn.
  • Lü F; Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
  • Zhang H; Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
  • Lu X; Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China.
  • He P; Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address: solidwaste@tongji.edu.cn.
J Hazard Mater ; 475: 134882, 2024 Aug 15.
Article en En | MEDLINE | ID: mdl-38870853
ABSTRACT
Poly(butylene adipate-co-terephthalate) (PBAT) is a biodegradable plastic that is difficult to degrade under both mesophilic and thermophilic anaerobic conditions. In this study, the impact of the thermo-alkaline pretreatment (48 h, 70 °C, 1 % w/v NaOH) on the anaerobic degradation (AD) of PBAT, poly(lactic acid) (PLA) and PBAT/PLA blended plastics was investigated. Under mesophilic conditions, pretreatment only improved the methane yield of PBAT/PLA/starch plastic (100 days, 51 and 34 NmL/g VSadd for the treated and original plastics, respectively). Under thermophilic conditions, the pretreatment increased the methanogenic rate of PLA, PBAT and PBAT/PLA/starch plastic at the beginning stage (22 days, 35 and 79 NmL/g VSadd for original and treated PBAT, respectively), but did not change the methane yield at the end of the incubation (100 days, 91 NmL/g VSadd for original and treated PBAT). The reduction in the molecular weight and the formation of pore structures on the plastic surface accelerated the utilization of plastics by microorganisms. Furthermore, the pretreated plastics tend to form microplastics (MPs) with size predominantly below 500 µm (>90 %). The numbers of MPs dynamically changed with the degradation time. Several genera of bacteria showed specific degradation of biodegradable plastics under thermophilic conditions, including Desulfitibacter, Coprothermobacter, Tepidimicrobium, c_ D8A-2 and Thermacetogenium. The results suggest that more attention should be paid to the problem of MPs arising from the thermo-alkaline pretreatment.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Poliésteres Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Poliésteres Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China