Your browser doesn't support javascript.
loading
A ratiometric fluorescent sensor based on S-doped BCNO quantum dots and Au nanoclusters combined with 3D-printing portable device for the detection of malachite green.
Li, Wenhao; Liu, Fang; He, Yu; Song, Gongwu.
Afiliación
  • Li W; Ministry of Education, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Province Key Laboratory for Precision Manufacturing of Small Molecular Active Pharmaceutical Ingredients, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Chi
  • Liu F; Ministry of Education, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Province Key Laboratory for Precision Manufacturing of Small Molecular Active Pharmaceutical Ingredients, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Chi
  • He Y; Ministry of Education, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Province Key Laboratory for Precision Manufacturing of Small Molecular Active Pharmaceutical Ingredients, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Chi
  • Song G; Ministry of Education, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Province Key Laboratory for Precision Manufacturing of Small Molecular Active Pharmaceutical Ingredients, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, Chi
Mikrochim Acta ; 191(7): 394, 2024 Jun 14.
Article en En | MEDLINE | ID: mdl-38877187
ABSTRACT
Sulfur-doped BCNO quantum dots (S-BCNO QDs) emitting green fluorescence were prepared by elemental doping method. The ratiometric fluorescence probe with dual emissions was simply established by mixed S-BCNO QDs with gold nanoclusters (GSH-Au NCs). Because the emission spectrum of Au NCs (donor) at 615 nm overlapped well with the ultraviolet absorption of malachite green (MG), fluorescence resonance energy transfer (FRET) can be achieved. When the concentration of MG increased, the fluorescence intensity (F495) of S-BCNO QDs decreased slowly, while the fluorescence intensity (F615) of Au NCs decreased sharply. The fluorescence intensity ratio of F615/F495 decreased with the increase of MG. By plotting the F615/F495 values against MG concentration, a sensitive and rapid detection of MG was possible with a wide detection range (0.1-50 µM) and a low detection limit of 10 nM. Due to the accompanying fluorescence color change from pink to blue-green, it can be used for visual detection. A three dimensional-printing device utilizing digital image colorimetry to capture color changes through the built-in camera, enables quantitative detection of MG with a good linearity between the values of red/green ratio and MG concentrations at the range 1-50 µM. This sensing platform had a range of advantages, including high cost-effectiveness, portability, ease of operation, and high sensitivity. Furthermore, the sensing platform was successfully applied to the detection of MG in real water sample and fish samples, thereby verifying the reliability and effectiveness of this sensing platform in water quality monitoring and food safety.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Mikrochim Acta Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Mikrochim Acta Año: 2024 Tipo del documento: Article