Your browser doesn't support javascript.
loading
Prussian Blue Analogue Glasses for Photoinduced CO2 Conversion.
Kosasang, Soracha; Ma, Nattapol; Impeng, Sarawoot; Bureekaew, Sareeya; Namiki, Yuji; Tsujimoto, Masahiko; Saothayanun, Taya; Yamada, Hiroki; Horike, Satoshi.
Afiliación
  • Kosasang S; Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
  • Ma N; Center for Membrane Separations, Adsorption, Catalysis &; Spectroscopy (cMACS), KU Leuven, Celestijnenlaan 200 F Box 2454, 3001 Leuven, Belgium.
  • Impeng S; National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
  • Bureekaew S; Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand.
  • Namiki Y; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
  • Tsujimoto M; Frontier Research Center, POLA Chemical Industries, Inc., Kashio-cho, Totsuka-ku, Yokohama, Kanagawa 244-0812, Japan.
  • Saothayanun T; Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
  • Yamada H; Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand.
  • Horike S; Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan.
J Am Chem Soc ; 146(26): 17793-17800, 2024 Jul 03.
Article en En | MEDLINE | ID: mdl-38913361
ABSTRACT
Crystal-to-glass transformation is a powerful approach to modulating the chemical and physical properties of crystals. Here we demonstrate that the glass transformation of cobalt hexacyanoferrate crystals, one of the Prussian blue analogues, increased the concentration of open metal sites and altered the electronic state while maintaining coordination geometries and short-range ordering in the structure. The compositional and structural changes were characterized by X-ray absorption fine structure, energy dispersive X-ray spectroscopy, and X-ray total scattering. The changes contribute to the flat band potential of the glass becoming closer to the redox potential of CO2 reduction. The valence band energy of the glass also shifts, resulting in lower band gap energy. Both the increased open metal sites and the optimal electronic structure upon vitrification enhance photocatalytic activity toward CO2-to-CO conversions (9.9 µmol h-1 CO production) and selectivity (72.4%) in comparison with the crystalline counterpart (3.9 µmol h-1 and 42.8%).

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article País de afiliación: Japón