Your browser doesn't support javascript.
loading
A Hydrophilic Metal Azolate Coordination Polymer for In Situ Encapsulation of Haloalkane Dehalogenase with Enhanced Enzymatic Performance.
Wu, Yin; Sun, Yan.
Afiliación
  • Wu Y; Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
  • Sun Y; Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
ACS Appl Mater Interfaces ; 16(27): 35566-35575, 2024 Jul 10.
Article en En | MEDLINE | ID: mdl-38922631
ABSTRACT
Encapsulating enzymes within metal-organic frameworks such as zeolitic imidazolate framework-8 (ZIF-8) has been demonstrated to enhance enzymatic performance under harsh conditions. However, by computer-aided analysis, we revealed that highly hydrophobic organic ligands and unfavorable metal ions could greatly impair the activity of haloalkane dehalogenase DhaA by directly interacting with the catalytic sites, causing an extremely low activity of DhaA after encapsulating within ZIF-8. We also found that the presence of a protecting polymer could protect DhaA from the damage of organic ligands and metal ions and that a positively charged amino acid could increase the DhaA activity. Based on the simulations and experimental observations, we have designed to coencapsulate DhaA with poly(vinylpyrrolidone) (PVP) and lysine (Lys) within the amorphous Co-based metal azolate coordination polymer (CoCP). The as-prepared immobilized enzyme (DhaA/PVP/Lys@CoCP) exhibited significantly increased activity (91.5 times higher than that of DhaA@ZIF-8), dramatically enhanced thermostability at 50-70 °C, greatly improved catalytic performance in several organic solvent solutions, and good recyclability (over 75% of the initial activity after 10 cycles). The superiority of the immobilized enzyme was also demonstrated with a substrate frequently detected in the real world. In addition to the protective effect of PVP and positive effect of Lys, experimental and computational investigations unveiled other two favorable aspects that contributed to the enhanced enzymatic performance (1) high hydrophilicity of the immobilization material and (2) the use of Co2+ with a minimal negative effect on DhaA. The research has thus provided a promising immobilized DhaA with favorable catalytic performance and great potential in industrial applications.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Enzimas Inmovilizadas / Interacciones Hidrofóbicas e Hidrofílicas / Estructuras Metalorgánicas / Hidrolasas Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Enzimas Inmovilizadas / Interacciones Hidrofóbicas e Hidrofílicas / Estructuras Metalorgánicas / Hidrolasas Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China