Your browser doesn't support javascript.
loading
Single-Molecule Cross-Plane Conductance of Polycyclic Aromatic Hydrocarbon Derivatives.
Yang, Zi-Xian; Albalawi, Shadiah; Zhao, Shiqiang; Li, Yao-Guang; Zhang, Hewei; Zou, Yu-Ling; Hou, Songjun; Chen, Li-Chuan; Shi, Jia; Yang, Yang; Wu, Qingqing; Lambert, Colin; Hong, Wenjing.
Afiliación
  • Yang ZX; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China.
  • Albalawi S; Department of Physics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk, Saudi Arabia.
  • Zhao S; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China.
  • Li YG; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China.
  • Zhang H; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China.
  • Zou YL; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China.
  • Hou S; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China.
  • Chen LC; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China.
  • Shi J; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China.
  • Yang Y; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China.
  • Wu Q; Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom.
  • Lambert C; Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom.
  • Hong W; State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, Fujian, P. R. China.
Chemistry ; : e202402095, 2024 Jun 29.
Article en En | MEDLINE | ID: mdl-38943462
ABSTRACT
In the cross-plane single-molecule junctions, the correlation between molecular aromaticity and conductance remained puzzling. Cross-plane break junction (XPBJ) provides new insight into understanding the role of aromaticity and conjugation to molecules on charge transport through the planar molecules. In this work, we investigated the modulation of cross-plane charge transport in pyrene derivatives by hydrogenation and substituents based on the XPBJ method that differs from those used in-plane transport. We measured the electrical conductance of the hydrogenated derivatives of the pyrenes and found that hydrogenation reduces conductance, and the fully hydrogenated molecule has the lowest conductance. Conductance of pyrene derivatives increased after substitution by both electron-donating and electron-withdrawing groups. By calculating, the trend in decreased conductance of hydrogenated pyrene was found to be consistent with the change in aromaticity. Electron-withdrawing substituents reduce the aromaticity of the molecule and narrow the HOMO-LUMO gap, while electron-donating groups increase the aromaticity but also narrow the gap. Our work reveals the potential of fine-tuning the structure of the pyrene molecule to control the cross-plane charge transport through the single-molecule junctions.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article