Your browser doesn't support javascript.
loading
Novel BiOI/LaOXI〈IX〉 heterojunction with enhanced visible-light driven photocatalytic performance: unveiling the mechanism of interlayer electron transition.
Zhou, Mengshi; Zhang, Chunxiao; He, Chaoyu; Li, Jin; Ouyang, Tao; Tang, Chao; Zhong, Jianxin.
Afiliación
  • Zhou M; Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, People's Republic of China. tang_chao@xtu.edu.cn.
  • Zhang C; Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, People's Republic of China. tang_chao@xtu.edu.cn.
  • He C; School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong 255100, People's Republic of China.
  • Li J; Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, People's Republic of China. tang_chao@xtu.edu.cn.
  • Ouyang T; Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, People's Republic of China. tang_chao@xtu.edu.cn.
  • Tang C; Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, People's Republic of China. tang_chao@xtu.edu.cn.
  • Zhong J; Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, People's Republic of China. tang_chao@xtu.edu.cn.
Phys Chem Chem Phys ; 26(28): 19450-19459, 2024 Jul 17.
Article en En | MEDLINE | ID: mdl-38973666
ABSTRACT
Improving visible light absorption plays an important role in the utilization of solar power for photocatalysis. Using first-principles calculations within the HSE06 functional, we propose that the semiconductor heterojunction BiOI/LaOXI〈IX〉 extends the optical absorption to the near-infrared range, boosts the absorption coefficient from 1.28 × 105 cm-1 to above 2.20 × 105 cm-1 in the visible light range, and increases the conversion efficiency of solar power up to 9.48%. The enhanced optical absorption derives from the significant interlayer transition and excitonic effect which benefit from polarized LaOXI with a flat band in the highest valence band (VB). In BiOI/LaOClI〈ICl 〉, the electrostatic potential difference (ΔΦ) modifies the band edge positions to meet the requirements for photocatalytic overall water splitting, while the polarized electric field (Ep) accelerates the separation of photogenerated carriers and regulates the overpotentials of photogenerated carriers following a direct Z-scheme strategy. In addition, BiOI/LaOXI〈IX〉 is dynamically and thermodynamically stable. Furthermore, only a low external potential is needed to drive the redox reaction. Our theoretical results suggest that BiOI/LaOXI〈IX〉 could be a potential photocatalyst for overall water splitting with enhanced visible light absorption.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article