Your browser doesn't support javascript.
loading
Low-Power Wireless Sensor Module for Machine Learning-Based Continuous Monitoring of Nuclear Power Plants.
Lee, Jae-Cheol; Choi, You-Rak; Yeo, Doyeob; Moon, Sangook.
Afiliación
  • Lee JC; Nuclear System Integrity Sensing and Diagnosis Division, Korea Atomic Energy Research Institute (KAERI), 989-111 Daedeok-daero, Yuseong, Daejeon 34057, Republic of Korea.
  • Choi YR; Nuclear System Integrity Sensing and Diagnosis Division, Korea Atomic Energy Research Institute (KAERI), 989-111 Daedeok-daero, Yuseong, Daejeon 34057, Republic of Korea.
  • Yeo D; Nuclear System Integrity Sensing and Diagnosis Division, Korea Atomic Energy Research Institute (KAERI), 989-111 Daedeok-daero, Yuseong, Daejeon 34057, Republic of Korea.
  • Moon S; Department of Electrical and Electronic Engineering, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon 35349, Republic of Korea.
Sensors (Basel) ; 24(13)2024 Jun 28.
Article en En | MEDLINE | ID: mdl-39000987
ABSTRACT
This paper introduces the novel design and implementation of a low-power wireless monitoring system designed for nuclear power plants, aiming to enhance safety and operational efficiency. By utilizing advanced signal-processing techniques and energy-efficient technologies, the system supports real-time, continuous monitoring without the need for frequent battery replacements. This addresses the high costs and risks associated with traditional wired monitoring methods. The system focuses on acoustic and ultrasonic analysis, capturing sound using microphones and processing these signals through heterodyne frequency conversion for effective signal management, accommodating low-power consumption through down-conversion. Integrated with edge computing, the system processes data locally at the sensor level, optimizing response times to anomalies and reducing network load. Practical implementation shows significant reductions in maintenance overheads and environmental impact, thereby enhancing the reliability and safety of nuclear power plant operations. The study also sets the groundwork for future integration of sophisticated machine learning algorithms to advance predictive maintenance capabilities in nuclear energy management.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article