Your browser doesn't support javascript.
loading
Plasmon-Driven Highly Selective CO2 Photoreduction to C2H4 on Ionic Liquid-Mediated Copper Nanowires.
Liu, Hongli; Sun, Bin; Li, Zaiqi; Xiao, Difei; Wang, Zeyan; Liu, Yuanyuan; Zheng, Zhaoke; Wang, Peng; Dai, Ying; Cheng, Hefeng; Huang, Baibiao.
Afiliación
  • Liu H; Shandong University, State Key Lab of Crystal Materials, CHINA.
  • Sun B; Shandong University, State Key Lab of Crystal Materials, CHINA.
  • Li Z; Shandong University, State Key Lab of Crystal Materials, CHINA.
  • Xiao D; Shandong University, State Key Lab of Crystal Materials, CHINA.
  • Wang Z; Shandong University, State Key Lab of Crystal Materials, CHINA.
  • Liu Y; Shandong University, State Key Lab of Crystal Materials, CHINA.
  • Zheng Z; Shandong University, State Key Lab of Crystal Materials, CHINA.
  • Wang P; Shandong University, State Key Lab of Crystal Materials, CHINA.
  • Dai Y; Shandong University, School of Physics, CHINA.
  • Cheng H; Shandong University, State Key Lab of Crystal Materials, CHINA.
  • Huang B; Shandong University, State Key Laboratory of Crystal Materials, 250100, Jinan, CHINA.
Angew Chem Int Ed Engl ; : e202410596, 2024 Jul 19.
Article en En | MEDLINE | ID: mdl-39031951
ABSTRACT
Selective CO2 photoreduction to value-added multi-carbon (C2+) feedstocks, such as C2H4, holds great promise in direct solar-to-chemical conversion for a carbon-neutral future. Nevertheless, the performance is largely inhibited by the high energy barrier of C-C coupling process, thereby leading to C2+ products with low selectivity. Here we report that through facile surface immobilization of a 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) ionic liquid, plasmonic Cu nanowires could enable highly selective CO2 photoreduction to C2H4 product. At an optimal condition, the resultant plasmonic photocatalyst exhibits C2H4 production with selectivity up to 96.7% under 450 nm monochromatic light irradiation, greatly surpassing its pristine Cu counterpart. Combined in situ spectroscopies and computational calculations unravel that the addition of EMIM-BF4 ionic liquid modulates the local electronic structure of Cu, resulting in its enhanced adsorption strength of *CO intermediate and significantly reduced energy barrier of C-C coupling process. This work paves new path for Cu surface plasmons in selective artificial photosynthesis to targeted products.
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2024 Tipo del documento: Article País de afiliación: China