Your browser doesn't support javascript.
loading
AAontology: An Ontology of Amino Acid Scales for Interpretable Machine Learning.
Breimann, Stephan; Kamp, Frits; Steiner, Harald; Frishman, Dmitrij.
Afiliación
  • Breimann S; Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany; Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
  • Kamp F; Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany.
  • Steiner H; Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
  • Frishman D; Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany. Electronic address: dimitri.frischmann@tum.de.
J Mol Biol ; 436(19): 168717, 2024 Oct 01.
Article en En | MEDLINE | ID: mdl-39053689
ABSTRACT
Amino acid scales are crucial for protein prediction tasks, many of them being curated in the AAindex database. Despite various clustering attempts to organize them and to better understand their relationships, these approaches lack the fine-grained classification necessary for satisfactory interpretability in many protein prediction problems. To address this issue, we developed AAontology-a two-level classification for 586 amino acid scales (mainly from AAindex) together with an in-depth analysis of their relations-using bag-of-word-based classification, clustering, and manual refinement over multiple iterations. AAontology organizes physicochemical scales into 8 categories and 67 subcategories, enhancing the interpretability of scale-based machine learning methods in protein bioinformatics. Thereby it enables researchers to gain a deeper biological insight. We anticipate that AAontology will be a building block to link amino acid properties with protein function and dysfunctions as well as aid informed decision-making in mutation analysis or protein drug design.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Proteínas / Biología Computacional / Bases de Datos de Proteínas / Aprendizaje Automático / Aminoácidos Idioma: En Revista: J Mol Biol Año: 2024 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Proteínas / Biología Computacional / Bases de Datos de Proteínas / Aprendizaje Automático / Aminoácidos Idioma: En Revista: J Mol Biol Año: 2024 Tipo del documento: Article País de afiliación: Alemania