Circ_19038 and lnc-AK016022 synergistically regulate Sirt1 to promote remyelination and alleviate white matter injury in preterm mice.
Arch Biochem Biophys
; 760: 110108, 2024 10.
Article
en En
| MEDLINE
| ID: mdl-39084281
ABSTRACT
Maternal inflammation can lead to premature birth and fetal brain damage. CircRNA_19038 and lncRNA-AK016022 have been shown to be significantly reduced in brain tissues of preterm mice, while whether they are involved in the regulation of preterm white matter injury remains to be explored. Pregnant mice were intraperitoneally injected with lipopolysaccharide (LPS) to establish a preterm brain injury model. Healthy mice born at term served as controls. Lentivirus-mediated circ_19038 overexpression vector (LV-circ_19038), LV-lnc-AK016022, LV-Sirt1 and LV-sh-Sirt1 were administered to preterm mice through the ventricles. The expression levels of circ_19038, lnc-AK016022 and Sirt1 in the brain tissues of preterm mice were significantly lower than those of full-term healthy mice, and circ_19038 and lnc-AK016022 were co-localized in the brain tissues. Upregulation of circ_19038 or/and lnc-AK016022 promoted remyelination and alleviated white matter structural damage, neuroinflammation, and long-term cognitive and motor deficits in preterm mice, and the combined effect of circ_19038 and lnc-AK016022 showed better results. Primary mouse neuronal cells were isolated to investigate the regulatory effects of circ_19038 and lnc-AK016022 on Sirt1. Circ_19038 and lnc-AK016022 jointly promoted the expression of Sirt1 by adsorbing miR-1b and miR-328, respectively. Moreover, silencing Sirt1 antagonized the beneficial effects of circ_19038 or/and lnc-AK016022 on brain white matter injury in preterm mice. In conclusion, circ_19038 and lnc-AK016022 synergistically regulated Sirt1 expression to promote remyelination and alleviate white matter injury in preterm mice.
Palabras clave
Texto completo:
1
Base de datos:
MEDLINE
Asunto principal:
Sirtuina 1
/
ARN Largo no Codificante
/
Sustancia Blanca
/
ARN Circular
Límite:
Animals
/
Pregnancy
Idioma:
En
Revista:
Arch Biochem Biophys
Año:
2024
Tipo del documento:
Article
País de afiliación:
China