Your browser doesn't support javascript.
loading
Ni-Sr/TiZr for H2 from methane via POM: Sr loading & optimization.
Alwadai, Norah; Abahussain, Abdulaziz A M; Vadodariya, Dharmesh M; Banabdwin, Khaled M; Fakeeha, Anis Hamza; Abu-Dahrieh, Jehad K; Almuqati, Naif S; Alghamdi, Ahmad M; Kumar, Rawesh; Al-Fatesh, Ahmed S.
Afiliación
  • Alwadai N; Department of Physics, College of Science, Princess Nourah bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia.
  • Abahussain AAM; Chemical Engineering Department, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia aalfatesh@ksu.edu.sa.
  • Vadodariya DM; Department of Chemistry, Indus University Ahmedabad Gujarat 382115 India kr.rawesh@gmail.com.
  • Banabdwin KM; Chemical Engineering Department, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia aalfatesh@ksu.edu.sa.
  • Fakeeha AH; Chemical Engineering Department, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia aalfatesh@ksu.edu.sa.
  • Abu-Dahrieh JK; School of Chemistry and Chemical Engineering, Queen's University Belfast Belfast BT95AG UK.
  • Almuqati NS; Institute of Refining and Petrochemicals Technologies, King Abdulaziz City for Science and Technology (KACST) P. O. Box 6086 Riyadh 11442 Saudi Arabia.
  • Alghamdi AM; Chemical Engineering Department, College of Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11432 Saudi Arabia.
  • Kumar R; Department of Chemistry, Indus University Ahmedabad Gujarat 382115 India kr.rawesh@gmail.com.
  • Al-Fatesh AS; Chemical Engineering Department, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia aalfatesh@ksu.edu.sa.
RSC Adv ; 14(35): 25273-25288, 2024 Aug 12.
Article en En | MEDLINE | ID: mdl-39139230
ABSTRACT
Achieving remarkable H2 yield with significantly high H2/CO over Ni-based catalysts through partial oxidation of methane (POM) is a realistic approach to depleting the concentration of CH4 and using H2 and CO as synthetic feedstock. This study examined Ni catalysts on titania-zirconia for methane conversion via POM at 600 °C and atmospheric pressure. The addition of strontium to the catalyst was explored to improve its performance. Catalysts were characterized by X-ray diffraction, Raman-infrared-UV-vis spectroscopy, and Temperature-programmed reduction-desorption techniques (TPR, TPD). 2.5 wt% Sr addition induced the formation of the highest concentration of extreme basic sites. Interestingly, over the unpromoted catalyst, active sites are majorly generated by hardly reducible NiO species whereas upon 2.5 wt% promoted Sr promotional addition, most of active sites are derived by easily reducible NiO species. 45% CH4 conversion and 47% H2 yield with H2/CO = 3.5 were achieved over 2.5 wt% Sr promoted 5Ni/30TiO2 + ZrO2 catalyst. These results provide insight into the role of basic sites in enhancing activity through switching indirect pathways over direct pathways for POM. Further process optimization was carried out in the range of 10 000-22 000 SV, 0.35-0.75 O2/CH4, and 600-800 °C reaction temperature over 5Ni2.5Sr/30TiO2 + ZrO2 by using central composite design under response surface methodology. The optimum activity as high as ∼88% CH4 conversion, 86-87% yield of H2, and 2.92H2/CO were predicted and experimentally validated at 800 °C reaction temperature, 0.35O2/CH4 ratio, and 10 000 space velocity.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: RSC Adv Año: 2024 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: RSC Adv Año: 2024 Tipo del documento: Article