Your browser doesn't support javascript.
loading
Multi-responsive poly-catecholamine nanomembranes.
Krysztofik, Adam; Warzajtis, Marta; Pochylski, Mikolaj; Boecker, Marcel; Yu, Jiyao; Marchesi D'Alvise, Tommaso; Pula, Przemyslaw; Majewski, Pawel W; Synatschke, Christopher V; Weil, Tanja; Graczykowski, Bartlomiej.
Afiliación
  • Krysztofik A; Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland. bartlomiej.graczykowski@amu.edu.pl.
  • Warzajtis M; Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland. bartlomiej.graczykowski@amu.edu.pl.
  • Pochylski M; Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland. bartlomiej.graczykowski@amu.edu.pl.
  • Boecker M; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
  • Yu J; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
  • Marchesi D'Alvise T; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
  • Pula P; Faculty of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland.
  • Majewski PW; Faculty of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland.
  • Synatschke CV; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
  • Weil T; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
  • Graczykowski B; Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland. bartlomiej.graczykowski@amu.edu.pl.
Nanoscale ; 16(34): 16227-16237, 2024 Aug 29.
Article en En | MEDLINE | ID: mdl-39140363
ABSTRACT
The contraction of nanomaterials triggered by stimuli can be harnessed for micro- and nanoscale energy harvesting, sensing, and artificial muscles toward manipulation and directional motion. The search for these materials is dictated by optimizing several factors, such as stimulus type, conversion efficiency, kinetics and dynamics, mechanical strength, compatibility with other materials, production cost and environmental impact. Here, we report the results of studies on bio-inspired nanomembranes made of poly-catecholamines such as polydopamine, polynorepinephrine, and polydextrodopa. Our findings reveal robust mechanical features and remarkable multi-responsive properties of these materials. In particular, their immediate contraction can be triggered globally by atmospheric moisture reduction and temperature rise and locally by laser or white light irradiation. For each scenario, the process is fully reversible, i.e., membranes spontaneously expand upon removing the stimulus. Our results unveil the universal multi-responsive nature of the considered polycatecholamine membranes, albeit with distinct differences in their mechanical features and response times to light stimulus. We attribute the light-triggered contraction to photothermal heating, leading to water desorption and subsequent contraction of the membranes. The combination of multi-responsiveness, mechanical robustness, remote control via light, low-cost and large-scale fabrication, biocompatibility, and low-environment impact makes polycatecholamine materials promising candidates for advancing technologies.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2024 Tipo del documento: Article País de afiliación: Polonia

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2024 Tipo del documento: Article País de afiliación: Polonia