Your browser doesn't support javascript.
loading
Comparative toxic effect of tire wear particle-derived compounds 6PPD and 6PPD-quinone to Chlorella vulgaris.
Liu, Jinzheng; Yu, Miao; Shi, Ruiying; Ge, Yichen; Li, Jiantao; Zeb, Aurang; Cheng, Zhipeng; Liu, Weitao.
Afiliación
  • Liu J; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
  • Yu M; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
  • Shi R; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
  • Ge Y; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
  • Li J; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
  • Zeb A; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
  • Cheng Z; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China. Electronic address
  • Liu W; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China. Electronic address
Sci Total Environ ; 951: 175592, 2024 Nov 15.
Article en En | MEDLINE | ID: mdl-39154997
ABSTRACT
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a widely used antioxidant in rubber products, and its corresponding ozone photolysis product N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), have raised public concerns due to their environmental toxicity. However, there is an existing knowledge gap on the toxicity of 6PPD and 6PPD-Q to aquatic plants. A model aquatic plant, Chlorella vulgaris (C. vulgaris), was subjected to 6PPD and 6PPD-Q at concentrations of 50, 100, 200, and 400 µg/L to investigate their effects on plant growth, photosynthetic, antioxidant system, and metabolic behavior. The results showed that 6PPD-Q enhanced the photosynthetic efficiency of C. vulgaris, promoting growth of C. vulgaris at low concentrations (50, 100, and 200 µg/L) while inhibiting growth at high concentration (400 µg/L). 6PPD-Q induced more oxidative stress than 6PPD, disrupting cell permeability and mitochondrial membrane potential stability. C. vulgaris responded to contaminant-induced oxidative stress by altering antioxidant enzyme activities and active substance levels. Metabolomics further identified fatty acids as the most significantly altered metabolites following exposure to both contaminants. In conclusion, this study compares the toxicity of 6PPD and 6PPD-Q to C. vulgaris, with 6PPD-Q demonstrating higher toxicity. This study provides valuable insight into the risk assessment of tire wear particles (TWPs) derived chemicals in aquatic habitats and plants.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Chlorella vulgaris Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Chlorella vulgaris Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article País de afiliación: China