Your browser doesn't support javascript.
loading
Establishment of CRISPR-Cas9 ribonucleoprotein mediated MSTN gene edited pregnancy in buffalo: Compare cells transfection and zygotes electroporation.
Punetha, Meeti; Saini, Sheetal; Choudhary, Suman; Sharma, Surabhi; Bala, Renu; Kumar, Pradeep; Sharma, R K; Yadav, P S; Datta, T K; Kumar, Dharmendra.
Afiliación
  • Punetha M; Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India.
  • Saini S; Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India.
  • Choudhary S; Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India.
  • Sharma S; Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India.
  • Bala R; Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India.
  • Kumar P; Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India.
  • Sharma RK; Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India.
  • Yadav PS; Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India.
  • Datta TK; Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India.
  • Kumar D; Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India. Electronic address: dharmendra.kumar@icar.gov.in.
Theriogenology ; 229: 158-168, 2024 Nov.
Article en En | MEDLINE | ID: mdl-39178617
ABSTRACT
Genome editing is recognized as a powerful tool in agriculture and research, enhancing our understanding of genetic function, diseases, and productivity. However, its progress in buffaloes has lagged behind other mammals due to several challenges, including long gestational periods, single pregnancies, and high raising costs. In this study, we aimed to generate MSTN-edited buffaloes, known for their distinctive double-muscling phenotype, as a proof of concept. To meet our goal, we used somatic cell nuclear transfer (SCNT) and zygotic electroporation (CRISPR-EP) technique. For this, we firstly identified the best transfection method for introduction of RNP complex into fibroblast which was further used for SCNT. For this, we compared the transfection, cleavage efficiency and cell viability of nucleofection and lipofection in adult fibroblasts. The cleavage, transfection efficiency and cell viability of nucleofection group was found to be significantly (P ≤ 0.05) higher than lipofection group. Four MSTN edited colony were generated using nucleofection, out of which three colonies was found to be biallelic and one was monoallelic. Further, we compared the efficacy, embryonic developmental potential and subsequent pregnancy outcome of SCNT and zygotic electroporation. The blastocyst rate of electroporated group was found to be significantly (P ≤ 0.05) higher than SCNT group. However, the zygotic electroporation group resulted into two pregnancies which were confirmed to be MSTN edited. Since, the zygotic electroporation does not require complex micromanipulation techniques associated with SCNT, it has potential for facilitating the genetic modification in large livestock such as buffaloes. The present study lays the basis for inducing genetic alternation with practical or biological significance.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Búfalos / Transfección / Electroporación / Técnicas de Transferencia Nuclear / Sistemas CRISPR-Cas / Edición Génica Límite: Animals / Pregnancy Idioma: En Revista: Theriogenology Año: 2024 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Búfalos / Transfección / Electroporación / Técnicas de Transferencia Nuclear / Sistemas CRISPR-Cas / Edición Génica Límite: Animals / Pregnancy Idioma: En Revista: Theriogenology Año: 2024 Tipo del documento: Article País de afiliación: India