Your browser doesn't support javascript.
loading
A singlet-triplet hole-spin qubit in MOS silicon.
Liles, S D; Halverson, D J; Wang, Z; Shamim, A; Eggli, R S; Jin, I K; Hillier, J; Kumar, K; Vorreiter, I; Rendell, M J; Huang, J Y; Escott, C C; Hudson, F E; Lim, W H; Culcer, D; Dzurak, A S; Hamilton, A R.
Afiliación
  • Liles SD; School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia. s.liles@unsw.edu.au.
  • Halverson DJ; School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.
  • Wang Z; School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.
  • Shamim A; School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.
  • Eggli RS; Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland.
  • Jin IK; School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.
  • Hillier J; Center for Emergent Matter Science, RIKEN, 2-1, Hirosawa, Wako-shi, 351-0198, Saitama, Japan.
  • Kumar K; School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.
  • Vorreiter I; School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.
  • Rendell MJ; School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.
  • Huang JY; School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.
  • Escott CC; School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia.
  • Hudson FE; Diraq, Sydney, NSW, Australia.
  • Lim WH; School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia.
  • Culcer D; Diraq, Sydney, NSW, Australia.
  • Dzurak AS; School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia.
  • Hamilton AR; Diraq, Sydney, NSW, Australia.
Nat Commun ; 15(1): 7690, 2024 Sep 03.
Article en En | MEDLINE | ID: mdl-39227367
ABSTRACT
Holes in silicon quantum dots are promising for spin qubit applications due to the strong intrinsic spin-orbit coupling. The spin-orbit coupling produces complex hole-spin dynamics, providing opportunities to further optimise spin qubits. Here, we demonstrate a singlet-triplet qubit using hole states in a planar metal-oxide-semiconductor double quantum dot. We demonstrate rapid qubit control with singlet-triplet oscillations up to 400 MHz. The qubit exhibits promising coherence, with a maximum dephasing time of 600 ns, which is enhanced to 1.3 µs using refocusing techniques. We investigate the magnetic field anisotropy of the eigenstates, and determine a magnetic field orientation to improve the qubit initialisation fidelity. These results present a step forward for spin qubit technology, by implementing a high quality singlet-triplet hole-spin qubit in planar architecture suitable for scaling up to 2D arrays of coupled qubits.

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Australia