Empowering agriculture: The promise of zinc biofortification in rice.
Plant Physiol Biochem
; 216: 109085, 2024 Aug 30.
Article
en En
| MEDLINE
| ID: mdl-39260264
ABSTRACT
Zinc (Zn) plays a crucial role in metabolism in both plant and animal life. Zn deficiency is a worldwide problem that has recently gotten worse. This micronutrient shortage can be largely attributed to eating foods that are poor in zinc. If biofortification methods were widely used, Zn enrichment of the organ or tissue of interest would increase dramatically. However, Zn absorption mechanisms in rice plants must be understood on a fundamental level before these methods can be used effectively. Plant systems' Zn transporters and metal chelators play a major role in regulating this intricate physiological characteristic. The Zn efficiency of specific species is affected by a variety of factors, including the plant's growth stage, edaphic conditions, the time of year, and more. Both old and new ways of breeding plants can be used for biofortification. We have highlighted the significance of recombinant and genetic approaches to biofortifying in rice. In this review, we have the metabolic role of zinc in rice, and the different transporter families involved in the transportation of zinc in rice. We have also discussed the combined approaches of agronomic and genetic in zinc biofortification in rice and potential outcomes and future predictions.
Texto completo:
1
Base de datos:
MEDLINE
Idioma:
En
Revista:
Plant Physiol Biochem
Asunto de la revista:
BIOQUIMICA
/
BOTANICA
Año:
2024
Tipo del documento:
Article