Enhancement of photovoltaic parameters of thermally stable graphene/LaVO3semitransparent solar cell by employing interfacial graphene quantum dots.
Nanotechnology
; 35(49)2024 Sep 25.
Article
en En
| MEDLINE
| ID: mdl-39284318
ABSTRACT
Semitransparent solar cells are attracting attention not only for their visual effects but also for their ability to effectively utilize solar energy. Here, we demonstrate a translucent solar cell composed of bis(trifluoromethane sulfonyl)-amide (TFSA)-doped graphene (Gr), graphene quantum dots (GQDs), and LaVO3. By introducing a GQDs intermediate layer at the TFSA-Gr/LaVO3interface, we can improve efficiency by preventing carrier recombination and promoting charge collection/separation in the device. As a result, the efficiency of the GQDs-based solar cell was 4.35%, which was higher than the 3.52% of the device without GQDs. Furthermore, the average visible transmittance of the device is 28%, making it suitable for translucent solar cells. The Al reflective mirror-based system improved the power conversion efficiency by approximately 7% compared to a device without a mirror. Additionally, the thermal stability of the device remains at 90% even after 2000 h under an environment with a temperature of 60 °C and 40% relative humidity. These results suggest that TFSA-Gr/GQDs/LaVO3-based cells have a high potential for practical use as a next-generation translucent solar energy power source.
Texto completo:
1
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nanotechnology
Año:
2024
Tipo del documento:
Article